Back to Search
Start Over
Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds
- Source :
- Astronomy & Astrophysics, 565, pp. A103(1)-A103(28), Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2014, 565, pp.A103. ⟨10.1051/0004-6361/201322612⟩, Ade, P A R, Aghamin, N, Alves, M I R, Arnaud, M, Varis, J & Planck Collaboration 2014, ' Planck intermediate results : XV: A study of anomalous microwave emission in Galactic clouds ', Astronomy and Astrophysics, vol. 565 . https://doi.org/10.1051/0004-6361/201322612, Ade, P A R, Aghanim, N, Alves, M-H, Arnaud, M, Atrio-Barandela, F, Aumont, J, Baccigalupi, C, Banday, A J, Barreiro, R B, Battaner, E, Christensen, P R, Hornstrup, A, Linden-Vørnle, M, Naselsky, P, Nørgaard-Nielsen, H U, Novikov, I, Oxborrow, C A & Collaboration, P 2014, ' Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds ', Astronomy and Astrophysics, vol. 565, A103 . https://doi.org/10.1051/0004-6361/201322612, Astronomy & Astrophysics, 565, A103(1)-A103(28), Digital.CSIC. Repositorio Institucional del CSIC, instname, RUO. Repositorio Institucional de la Universidad de Oviedo, Astronomy and Astrophysics, Astronomy and Astrophysics-A&A, 2014, 565, pp.A103. ⟨10.1051/0004-6361/201322612⟩
- Publication Year :
- 2014
-
Abstract
- Anomalous microwave emission (AME) is believed to be due to electric dipole radiation from small spinning dust grains. The aim of this paper is a statistical study of the basic properties of AME regions and the environment in which they emit. We used WMAP and Planck maps, combined with ancillary radio and IR data, to construct a sample of 98 candidate AME sources, assembling SEDs for each source using aperture photometry on 1°-smoothed maps from 0.408≠GHz up to 3000 GHz. Each spectrum is fitted with a simple model of free-free, synchrotron (where necessary), cosmic microwave background (CMB), thermal dust, and spinning dust components. We find that 42 of the 98 sources have significant (>5σ) excess emission at frequencies between 20 and 60 GHz. An analysis of the potential contribution of optically thick free-free emission from ultra-compact H ii regions, using IR colour criteria, reduces the significant AME sample to 27 regions. The spectrum of the AME is consistent with model spectra of spinning dust. Peak frequencies are in the range 20-35 GHz except for the California nebula (NGC 1499), which appears to have a high spinning dust peak frequency of (50 ± 17) GHz. The AME regions tend to be more spatially extended than regions with little or no AME. The AME intensity is strongly correlated with the sub-millimetre/IR flux densities and comparable to previous AME detections in the literature. AME emissivity, defined as the ratio of AME to dust optical depth, varies by an order of magnitude for the AME regions. The AME regions tend to be associated with cooler dust in the range 14-20 K and an average emissivity index, βd, of +1.8, while the non-AME regions are typically warmer, at 20-27 K. In agreement with previous studies, the AME emissivity appears to decrease with increasing column density. This supports the idea of AME originating from small grains that are known to be depleted in dense regions, probably due to coagulation onto larger grains. We also find a correlation between the AME emissivity (and to a lesser degree the spinning dust peak frequency) and the intensity of the interstellar radiation field, G0. Modelling of this trend suggests that both radiative and collisional excitation are important for the spinning dust emission. The most significant AME regions tend to have relatively less ionized gas (free-free emission), although this could be a selection effect. The infrared excess, a measure of the heating of dust associated with H ii regions, is typically >4 for AME sources, indicating that the dust is not primarily heated by hot OB stars. The AME regions are associated with known dark nebulae and have higher 12 μm/25 μm ratios. The emerging picture is that the bulk of the AME is coming from the polycyclic aromatic hydrocarbons and small dust grains from the colder neutral interstellar medium phase. © 2014 ESO.<br />C.D. acknowledges an STFC Advanced Fellowship, an EU Marie-Curie IRG grant under the FP7, and an ERC Starting Grant (No. 307209). The Planck Collaboration acknowledges support from: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU).
- Subjects :
- CENTIMETER-WAVE CONTINUUM
[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]
Astronomy
Cosmic microwave background
Astrophysics
01 natural sciences
7. Clean energy
HII regions, Radiation mechanisms: general, Radio continuum: ISM, Submillimeter: ISM
submillimeter
general, Radio continuum: ISM, Submillimeter: ISM [HII regions, Radiation mechanisms]
SPINNING DUST EMISSION
010303 astronomy & astrophysics
general [Radiation mechanisms]
Physics
Nebula
HII regions
Radiation mechanisms: general
Radio continuum: ISM
Submillimeter: ISM
Astronomy and Astrophysics
Space and Planetary Science
Spinning dust
FOREGROUND EMISSION
ISM [Submillimeter]
3. Good health
ComputingMethodologies_DOCUMENTANDTEXTPROCESSING
Astrophysics::Earth and Planetary Astrophysics
ANISOTROPY-PROBE
education
radio continuum: ism
hii regions
radiation mechanisms: general
submillimeter: ism
submillimiter: ism
FOS: Physical sciences
Astrophysics::Cosmology and Extragalactic Astrophysics
radio continuum
NO
STAR-FORMATION
[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]
H-II REGIONS
Settore FIS/05 - Astronomia e Astrofisica
GHZ SKY SURVEY
Dark nebula
0103 physical sciences
Emissivity
PRE-LAUNCH STATUS
HII region
Astrophysics::Galaxy Astrophysics
Infrared excess
010308 nuclear & particles physics
Molecular cloud
115 Astronomy, Space science
Astrophysics - Astrophysics of Galaxies
ISM [Radio continuum]
Interstellar medium
radiation mechanisms
13. Climate action
Astrophysics of Galaxies (astro-ph.GA)
PROBE WMAP OBSERVATIONS
HII regions / radiation mechanisms: general / radio continuum: ISM / submillimeter: ISM
MOLECULAR CLOUDS
Subjects
Details
- ISSN :
- 00046361
- Database :
- OpenAIRE
- Journal :
- Astronomy & Astrophysics, 565, pp. A103(1)-A103(28), Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2014, 565, pp.A103. ⟨10.1051/0004-6361/201322612⟩, Ade, P A R, Aghamin, N, Alves, M I R, Arnaud, M, Varis, J & Planck Collaboration 2014, ' Planck intermediate results : XV: A study of anomalous microwave emission in Galactic clouds ', Astronomy and Astrophysics, vol. 565 . https://doi.org/10.1051/0004-6361/201322612, Ade, P A R, Aghanim, N, Alves, M-H, Arnaud, M, Atrio-Barandela, F, Aumont, J, Baccigalupi, C, Banday, A J, Barreiro, R B, Battaner, E, Christensen, P R, Hornstrup, A, Linden-Vørnle, M, Naselsky, P, Nørgaard-Nielsen, H U, Novikov, I, Oxborrow, C A & Collaboration, P 2014, ' Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds ', Astronomy and Astrophysics, vol. 565, A103 . https://doi.org/10.1051/0004-6361/201322612, Astronomy & Astrophysics, 565, A103(1)-A103(28), Digital.CSIC. Repositorio Institucional del CSIC, instname, RUO. Repositorio Institucional de la Universidad de Oviedo, Astronomy and Astrophysics, Astronomy and Astrophysics-A&A, 2014, 565, pp.A103. ⟨10.1051/0004-6361/201322612⟩
- Accession number :
- edsair.doi.dedup.....79d05cd47864bb2cae7d23d042822bbb
- Full Text :
- https://doi.org/10.1051/0004-6361/201322612⟩