Back to Search
Start Over
Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity
- Source :
- Optics express 23 (2015): 3196–3208. doi:10.1364/OE.23.003196, info:cnr-pdr/source/autori:Pitanti A.; Fink J.M.; Safavi-Naeini A.H.; Hill J. T.; Lei C.U.; Tredicucci A.; Painter O./titolo:Strong opto-electro-mechanical coupling in a silicon photonic crystal cavityo/doi:10.1364%2FOE.23.003196/rivista:Optics express/anno:2015/pagina_da:3196/pagina_a:3208/intervallo_pagine:3196–3208/volume:23
- Publication Year :
- 2015
- Publisher :
- Optical Society of America, 2015.
-
Abstract
- We fabricate and characterize a microscale silicon opto-electro-mechanical system whose mechanical motion is coupled capacitively to an electrical circuit and optically via radiation pressure to a photonic crystal cavity. To achieve large electromechanical interaction strength, we implement an inverse shadow mask fabrication scheme which obtains capacitor gaps as small as 30 nm while maintaining a silicon surface quality necessary for minimizing optical loss. Using the sensitive optical read-out of the photonic crystal cavity, we characterize the linear and nonlinear capacitive coupling to the fundamental omega(m)/2 pi - 63 MHz in-plane flexural motion of the structure, showing that the large electromechanical coupling in such devices may be suitable for realizing efficient microwave-to-optical signal conversion. We fabricate and characterize a microscale silicon opto-electromechanical system whose mechanical motion is coupled capacitively to an electrical circuit and optically via radiation pressure to a photonic crystal cavity. To achieve large electromechanical interaction strength, we implement an inverse shadow mask fabrication scheme which obtains capacitor gaps as small as 30 nm while maintaining a silicon surface quality necessary for minimizing optical loss. Using the sensitive optical read-out of the photonic crystal cavity, we characterize the linear and nonlinear capacitive coupling to the fundamental ωm=2π = 63 MHz in-plane flexural motion of the structure, showing that the large electromechanical coupling in such devices may be suitable for realizing efficient microwave-to-optical signal conversion.
- Subjects :
- OSCILLATOR
Materials science
MOTION
Silicon
chemistry.chemical_element
Physics::Optics
TRANSDUCTION
Settore FIS/03 - Fisica della Materia
law.invention
Crystal
RESONATORS
Resonator
Optics
SYSTEMS
law
QUANTUM GROUND-STATE
SENSORS
MICROWAVE
QUANTUM GROUND-STATE, RESONATORS, TRANSDUCTION, OSCILLATOR, MICROWAVE, SENSORS, SYSTEMS, MOTION, LIGHT
Photonic crystal
Capacitive coupling
Silicon photonics
business.industry
LIGHT
Photonic integrated circuit
Atomic and Molecular Physics, and Optics
Computer Science::Other
Capacitor
chemistry
Optoelectronics
business
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Optics express 23 (2015): 3196–3208. doi:10.1364/OE.23.003196, info:cnr-pdr/source/autori:Pitanti A.; Fink J.M.; Safavi-Naeini A.H.; Hill J. T.; Lei C.U.; Tredicucci A.; Painter O./titolo:Strong opto-electro-mechanical coupling in a silicon photonic crystal cavityo/doi:10.1364%2FOE.23.003196/rivista:Optics express/anno:2015/pagina_da:3196/pagina_a:3208/intervallo_pagine:3196–3208/volume:23
- Accession number :
- edsair.doi.dedup.....79c37ab23a8c8d430d868c927f8d9cef
- Full Text :
- https://doi.org/10.1364/OE.23.003196