Back to Search Start Over

Hierarchical Clustering: Objective Functions and Algorithms

Authors :
Claire Mathieu
Varun Kanada
Vincent Cohen-Addad
Frederik Mallmann-Trenn
Recherche Opérationnelle (RO)
LIP6
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)
Department of Computer Science (Brown University)
Brown University
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Mallmann-Trenn, Frederik
Source :
SODA 2018-Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018-Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, Jan 2018, New Orleans, LA, United States. pp.378-397, ⟨10.1137/1.9781611975031.26⟩, SODA, Mallmann-Trenn, Frederik
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

Hierarchical clustering is a recursive partitioning of a dataset into clusters at an increasingly finer granularity. Motivated by the fact that most work on hierarchical clustering was based on providing algorithms, rather than optimizing a specific objective, Dasgupta (2016) framed similarity-based hierarchical clustering as a combinatorial optimization problem, where a `good' hierarchical clustering is one that minimizes some cost function. He showed that this cost function has certain desirable properties, such as in order to achieve optimal cost disconnected components must be separated first and that in `structureless' graphs, i.e., cliques, all clusterings achieve the same cost. We take an axiomatic approach to defining `good' objective functions for both similarity and dissimilarity-based hierarchical clustering. We characterize a set of admissible objective functions (that includes the one introduced by Dasgupta) that have the property that when the input admits a `natural' ground-truth hierarchical clustering, the ground-truth clustering has an optimal value. Equipped with a suitable objective function, we analyze the performance of practical algorithms, as well as develop better and faster algorithms for hierarchical clustering. For similarity-based hierarchical clustering, Dasgupta (2016) showed that a simple recursive sparsest-cut based approach achieves an O(log^3/2 n)-approximation on worst-case inputs. We give a more refined analysis of the algorithm and show that it in fact achieves an O(√log n)-approximation. This improves upon the LP-based O(log n)-approximation of Roy and Pokutta (2016). For dissimilarity-based hierarchical clustering, we show that the classic average-linkage algorithm gives a factor 2 approximation, and provide a simple and better algorithm that gives a factor 3/2 approximation. This aims at explaining the success of this heuristics in practice. Finally, we consider `beyond-worst-case' scenario through a generalisation of the stochastic block model for hierarchical clustering. We show that Dasgupta's cost function also has desirable properties for these inputs and we provide a simple algorithm that for graphs generated according to this model yields a 1 + o(1) factor approximation.

Details

Language :
English
Database :
OpenAIRE
Journal :
SODA 2018-Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018-Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, Jan 2018, New Orleans, LA, United States. pp.378-397, ⟨10.1137/1.9781611975031.26⟩, SODA, Mallmann-Trenn, Frederik
Accession number :
edsair.doi.dedup.....79bdf3a838f67ba6de6e0266a0324f4f
Full Text :
https://doi.org/10.1137/1.9781611975031.26⟩