Back to Search
Start Over
A model for latent heat energy storage systems
- Source :
- International Journal of Energy Research. 30:1146-1157
- Publication Year :
- 2006
- Publisher :
- Hindawi Limited, 2006.
-
Abstract
- In this study, a theoretical approach is proposed for the prediction of time and temperature during the heat charge and discharge in the latent heat storage of phase changed materials (PCM). By the use of the average values of the mean specific heat capacities for the phase-changed materials, analytical solutions are obtained and compared with the available experimental data in the literature. It is shown that decreasing the entry temperature of the working fluid from −4 to −15°C has a very dominant and strong effect on the PCM solidification time. The effect of the working fluid flow rate and the material of PCM capsules on the time for complete solidification and total charging is also investigated. The agreement between the present theoretical model results and the experimental data related to the cooling using small spheres and the heat storage using rectangle containers is very good. The largest difference between the present results and the experimental data becomes about 10% when the fluid temperature approaches the phase change temperature at high temperatures. Copyright © 2006 John Wiley & Sons, Ltd.
- Subjects :
- Energy storage
Phase Change Materials
Latent Heat
Pulse Code Modulation
Nuclear science & technology
Energy Engineering and Power Technology
Thermodynamics
Flow rate
Heat charge
Thermal energy storage
Heat capacity
Solidification
Phase (matter)
Latent heat
Unit
Phase change
Heat storage
Storage time
Mathematical models
Renewable Energy, Sustainability and the Environment
Chemistry
Heat discharge
Phase change materials
Energy & fuels
Heat capacity rate
Volumetric flow rate
Storage time and mathematical model
Fuel Technology
Nuclear Energy and Engineering
PCM
Working fluid
Specific heat
Cooling
Heat energy storage system
Subjects
Details
- ISSN :
- 1099114X and 0363907X
- Volume :
- 30
- Database :
- OpenAIRE
- Journal :
- International Journal of Energy Research
- Accession number :
- edsair.doi.dedup.....79b857e3dc920c8aea33d75787ab5a8e
- Full Text :
- https://doi.org/10.1002/er.1210