Back to Search Start Over

Structural requirements for activation of excitatory amino acid receptors in the rat spinal cord in vitro

Authors :
David S.K. Magnuson
K. Curry
H. McLennan
M. J. Peet
Source :
Experimental brain research. 73(3)
Publication Year :
1988

Abstract

The conformational requirements for activation of N-methyl-D-aspartate (NMDA) and quisqualate (QUIS) excitatory amino acid receptors on rat spinal neurones in vitro have been examined using a number of conformationally restricted compounds related to L-glutamate (L-GLU). The excitants were assigned to a receptor type on the basis of their susceptibility to blockade by D (-)-2-amino-5-phosphonvalerate (DAPV) and kynurenate (KYNA). When iontophoretically applied to unidentified neurones in the dorsal horn of spinal cord slices maintained in vitro, three of the isomers of 1-amino-1,3-cyclopentane dicarboxylate (ACPD) evoked excitations which were DAPV-sensitive and therefore were probably elicited via NMDA receptors. The fourth isomer (D-trans-(1R,3S)-ACPD) resembled quinolinate (QUIN) in its actions, and differed from both NMDA and QUIS. Several pyridine derivatives in addition to QUIN were tested, and both the 2,5- and 2,6-pyridine dicarboxylates evoked excitations which, like those produced by QUIS and L-GLU, were largely unaffected by both DAPV and KYNA and thus appeared due to activation of the QUIS receptor. 2,4-Pyridine dicarboxylate acted as a weak and unselective antagonist of amino acid-induced excitations. The results support an earlier conclusion that compounds reacting with the NMDA receptor do so in an extended configuration whereas the QUIS receptor has a more folded template. The possibility that QUIN reacts with a receptor different from those activated by other amino acids is considered.

Details

ISSN :
00144819
Volume :
73
Issue :
3
Database :
OpenAIRE
Journal :
Experimental brain research
Accession number :
edsair.doi.dedup.....79a94111dc7ffbd596d9a2aa902970ff