Back to Search Start Over

Thermally activated domain wall motion in [Co/Ni](111) superlattices with perpendicular magnetic anisotropy

Authors :
Stéphane Andrieu
François Montaigne
Matthias Georg Gottwald
S. Le Gall
Nicolas Vernier
Thomas Hauet
Stéphane Mangin
Daniel Lacour
Michel Hehn
Dafiné Ravelosona
Laboratoire Génie électrique et électronique de Paris (GeePs)
Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris-Sud - Paris 11 (UP11)
Institut d'électronique fondamentale (IEF)
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Institut Jean Lamour (IJL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Deutsches Fernerkundungsdatenzentrum / German Remote Sensing Data Center (DFD)
Deutsches Zentrum für Luft- und Raumfahrt [Oberpfaffenhofen-Wessling] (DLR)
ANR-10-BLAN-1005,FRIENDS,Nouveaux Materiaux Magnétique pour la physique et les applications liées au transfert de spin(2010)
Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Applied Physics Letters, Applied Physics Letters, American Institute of Physics, 2015, 106 (6), pp.062406. ⟨10.1063/1.4908177⟩, INTERMAG 2015, INTERMAG 2015, May 2015, Beijing, China. pp.14419-57002, ⟨10.1109/INTMAG.2015.7156512⟩, Applied Physics Letters, 2015, 106 (6), pp.062406. ⟨10.1063/1.4908177⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

The control of magnetic domain wall (DW) motion under the action of an electrical current is of great interest for the development of new data storage electronic devices such as magnetic racetrack memories1 or logic devices2. In this context, materials with perpendicular magnetic anisotropy (PMA) are particularly attractive3,4 since they exhibit very narrow domain walls compatible with high density storage as well as spin-orbits effect that can improve the efficiency of current-induced domain wall motion5,6. However, even if the efficiency of current driven DW motion can be enhanced, the threshold current is still limited by the presence of structural defects in the materials. Particularly, the strong interaction of narrow DWs with random nanoscale inhomogeneities can lead to a so-called thermally activated creep motion for Hdep is the depinning field. This creep regime has been observed in various ultra thin films with PMA such as for instance Co/Pt7,8, CoFe or CoFeB9. Particularly, a ln(v) versus H−1/4 dependence has been found consistent with the propagation of a 1D domain wall in a 2D weak random disorder. As these films are usually deposited by sputtering, the random disorder originates in particular from crystalline texture, interface intermixing or grain boundaries, which induce a distribution of PMA on the nanoscale. In epitaxial systems, the nature, density and distribution of structural inhomogeneities can be very different, which may give rise to a different mechanism of domain wall motion. This has been shown for example in L 1 0 FePt films with PMA10 where extended 3D microtwins induced by a relaxation process generate a dendritic like motion distinct from the creep mechanism.

Details

Language :
English
ISSN :
00036951
Database :
OpenAIRE
Journal :
Applied Physics Letters, Applied Physics Letters, American Institute of Physics, 2015, 106 (6), pp.062406. ⟨10.1063/1.4908177⟩, INTERMAG 2015, INTERMAG 2015, May 2015, Beijing, China. pp.14419-57002, ⟨10.1109/INTMAG.2015.7156512⟩, Applied Physics Letters, 2015, 106 (6), pp.062406. ⟨10.1063/1.4908177⟩
Accession number :
edsair.doi.dedup.....7976f32d90ca723ab06cc645caa04122
Full Text :
https://doi.org/10.1063/1.4908177⟩