Back to Search Start Over

Neural network tokamak equilibria with incompressible flows

Authors :
D. A. Kaltsas
G. N. Throumoulopoulos
Publication Year :
2021

Abstract

We present several numerical solutions to a generalized Grad-Shafranov equation (GGSE), which governs axisymmetric plasma equilibria with incompressible flows of arbitrary direction, using fully connected, feed-forward, deep neural networks, also known as multi-layer perceptrons. Such artificial neural network (ANNs) are trained to approximate tokamak-relevant equilibria upon minimizing the GGSE mean squared residual in the plasma volume and the poloidal flux function on the plasma boundary. Solutions for the Solovev and the general linearizing ansatz for the free functions involved in the GGSE are obtained and benchmarked against known analytic solutions. We also construct a non-linear equilibrium incorporating characteristics relevant to the high confinement mode. In our numerical experiments it was observed that changing the radial distribution of the training points has a surprisingly small effect on the accuracy of the trained solution. In particular it is shown that localizing the training points at the plasma edge results in ANN solutions that describe quite accurately the entire magnetic configuration, thus demonstrating the interpolation capabilities of the ANNs.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....796751e5458014abadb70f9bf9952f1c