Back to Search Start Over

Nonparametric comparison of several transformations of distribution functions

Authors :
Denys Pommeret
Mohamed Boutahar
Badih Ghattas
Institut de mathématiques de Luminy (IML)
Centre National de la Recherche Scientifique (CNRS)-Université de la Méditerranée - Aix-Marseille 2
Institut de Mathématiques de Marseille (I2M)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique (CNRS)
Pommeret, Denys
Source :
Journal of Nonparametric Statistics, Journal of Nonparametric Statistics, American Statistical Association, 2013, Journal of Nonparametric Statistics, American Statistical Association, 2013, 25 (3), ⟨10.1080/10485252.2013.799158⟩, Journal of Nonparametric Statistics, 2013, Journal of Nonparametric Statistics, 2013, 25 (3), ⟨10.1080/10485252.2013.799158⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

This paper considers two random variables such that there exists a monotone transformation between their distribution functions. The problem is to test if there is a change in this transformation when these two variables are observed under K different conditions. The approach considered is a CUSUM test based on the cumulative sum of the residuals and a test statistic is proposed for testing the equality of the K transformations. The asymptotic distribution of the test statistic is derived and its finite sample properties are examined by simulation. As a further illustration, an analysis of a real data set concerning the impact of the financial crisis of September 2008 is given.

Details

Language :
English
ISSN :
10485252
Database :
OpenAIRE
Journal :
Journal of Nonparametric Statistics, Journal of Nonparametric Statistics, American Statistical Association, 2013, Journal of Nonparametric Statistics, American Statistical Association, 2013, 25 (3), ⟨10.1080/10485252.2013.799158⟩, Journal of Nonparametric Statistics, 2013, Journal of Nonparametric Statistics, 2013, 25 (3), ⟨10.1080/10485252.2013.799158⟩
Accession number :
edsair.doi.dedup.....795a9d8867e790f07d9494dc68771434
Full Text :
https://doi.org/10.1080/10485252.2013.799158⟩