Back to Search
Start Over
Eta invariant and Selberg Zeta function of odd type over convex co-compact hyperbolic manifolds
- Source :
- HAL, Advances in Mathematics, Advances in Mathematics, Elsevier, 2010, 225 (5), pp.2464-2516
- Publication Year :
- 2009
- Publisher :
- arXiv, 2009.
-
Abstract
- We show meromorphic extension and analyze the divisors of a Selberg zeta function of odd type $Z_{\Gamma,\Sigma}^{\rm o}(\lambda)$ associated to the spinor bundle $\Sigma$ on odd dimensional convex co-compact hyperbolic manifolds $X:=\Gamma\backslash\hh^{2n+1}$. We define a natural eta invariant $\eta(D)$ associated to the Dirac operator $D$ on $X$ and prove that $\eta(D)=\frac{1}{\pi i}\log Z_{\Gamma,\Sigma}^{\rm o}(0)$, thus extending Millson's formula to this setting. As a byproduct, we do a full analysis of the spectral and scattering theory of the Dirac operator on asymptotically hyperbolic manifolds. We also define an eta invariant for the odd signature operator and, under some conditions, we describe it on the Schottky space of 3-dimensional Schottky hyperbolic manifolds and relate it to Zograf factorization formula.<br />Comment: 36 pages
- Subjects :
- Mathematics - Differential Geometry
Eta invariants
Mathematics(all)
Dirac operator
General Mathematics
01 natural sciences
Relatively hyperbolic group
Mathematics - Spectral Theory
symbols.namesake
Eta invariant
0103 physical sciences
[MATH.MATH-SP] Mathematics [math]/Spectral Theory [math.SP]
FOS: Mathematics
0101 mathematics
Spectral Theory (math.SP)
Meromorphic function
Mathematics
Mathematical physics
010102 general mathematics
Mathematical analysis
Hyperbolic function
Hyperbolic manifold
Mathematics::Geometric Topology
Selberg zeta function
Signature operator
Differential Geometry (math.DG)
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
symbols
58J52, 37C30, 11M36,11F72
010307 mathematical physics
[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]
[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
Subjects
Details
- ISSN :
- 00018708 and 10902082
- Database :
- OpenAIRE
- Journal :
- HAL, Advances in Mathematics, Advances in Mathematics, Elsevier, 2010, 225 (5), pp.2464-2516
- Accession number :
- edsair.doi.dedup.....793eb0ea1a76c3d28524d3b80decfae1
- Full Text :
- https://doi.org/10.48550/arxiv.0901.4082