Back to Search Start Over

Eta invariant and Selberg Zeta function of odd type over convex co-compact hyperbolic manifolds

Authors :
Sergiu Moroianu
Jinsung Park
Colin Guillarmou
Guillarmou, Colin
Département de Mathématiques et Applications - ENS Paris (DMA)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
School of Mathematics (KIAS Séoul)
Korea Institute for Advanced Study (KIAS)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Source :
HAL, Advances in Mathematics, Advances in Mathematics, Elsevier, 2010, 225 (5), pp.2464-2516
Publication Year :
2009
Publisher :
arXiv, 2009.

Abstract

We show meromorphic extension and analyze the divisors of a Selberg zeta function of odd type $Z_{\Gamma,\Sigma}^{\rm o}(\lambda)$ associated to the spinor bundle $\Sigma$ on odd dimensional convex co-compact hyperbolic manifolds $X:=\Gamma\backslash\hh^{2n+1}$. We define a natural eta invariant $\eta(D)$ associated to the Dirac operator $D$ on $X$ and prove that $\eta(D)=\frac{1}{\pi i}\log Z_{\Gamma,\Sigma}^{\rm o}(0)$, thus extending Millson's formula to this setting. As a byproduct, we do a full analysis of the spectral and scattering theory of the Dirac operator on asymptotically hyperbolic manifolds. We also define an eta invariant for the odd signature operator and, under some conditions, we describe it on the Schottky space of 3-dimensional Schottky hyperbolic manifolds and relate it to Zograf factorization formula.<br />Comment: 36 pages

Details

ISSN :
00018708 and 10902082
Database :
OpenAIRE
Journal :
HAL, Advances in Mathematics, Advances in Mathematics, Elsevier, 2010, 225 (5), pp.2464-2516
Accession number :
edsair.doi.dedup.....793eb0ea1a76c3d28524d3b80decfae1
Full Text :
https://doi.org/10.48550/arxiv.0901.4082