Back to Search Start Over

Accurate Pixel-Wise Skin Segmentation Using Shallow Fully Convolutional Neural Network

Authors :
Abdul Haseeb
Muhammad Adnan Haider
Mansoor Ahmed
Muhammad Arsalan
Haroon Ahmed Khan
Syed Saud Naqvi
Komal Minhas
Tariq M. Khan
Source :
IEEE Access, Vol 8, Pp 156314-156327 (2020)
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

Skin segmentation plays an important role in human activity recognition, video surveillance, hand gesture identification, face detection, human tracking and robotic surgery. The accurate segmentation of the skin is necessary to recognize the human activity. Segmentation of skin is easy to realize in ideal situations because of similar backgrounds. But it becomes complicated because of presence of skin-like pixels, background illuminations, and certain changes in environment. These problems are addressed by incorporating preprocessing stages in current studies, but this raises the total cost of the system. However, there are some limitations associated with these methods in terms of accuracy and processing speed. In this work, we propose a skin semantic segmentation network (SSS-Net) that is able to capture the multi-scale contextual information and refines the segmentation results especially along object boundaries. Moreover our network helps to reduce the cost of the preprocessing as well. We have performed experiments on the five open datasets of human activity recognition for the segmentation of skin. Experimental results show SSS-Net outperforms the state-of-the-art methods in skin segmentation in terms of accuracies.

Details

Language :
English
ISSN :
21693536
Volume :
8
Database :
OpenAIRE
Journal :
IEEE Access
Accession number :
edsair.doi.dedup.....79165617f6cc91c411ea0d4251d7f4e3