Back to Search
Start Over
Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds
- Source :
- Acta Biomaterialia, 134
- Publication Year :
- 2021
-
Abstract
- Additively manufactured biodegradable porous iron has been only very recently demonstrated. Two major limitations of such a biomaterial are very low biodegradability and incompatibility with magnetic resonance imaging (MRI). Here, we present a novel biomaterial that resolves both of those limitations. We used extrusion-based 3D printing to fabricate ex situ-alloyed biodegradable iron-manganese scaffolds that are non-ferromagnetic and exhibit enhanced rates of biodegradation. We developed ink formulations containing iron and 25, 30, or 35 wt% manganese powders, and debinding and sintering process to achieve Fe-Mn scaffolds with 69% porosity. The Fe25Mn scaffolds had the ε-martensite and γ-austenite phases, while the Fe30Mn and Fe35Mn scaffolds had only the γ-austenite phase. All iron-manganese alloys exhibited weakly paramagnetic behavior, confirming their potential to be used as MRI-friendly bone substitutes. The in vitro biodegradation rates of the scaffolds were very much enhanced (i.e., 4.0 to 4.6 times higher than that of porous iron), with the Fe35Mn alloy exhibiting the highest rate of biodegradation (i.e., 0.23 mm/y). While the elastic moduli and yield strengths of the scaffolds decreased over 28 days of in vitro biodegradation, those values remained in the range of cancellous bone. The culture of preosteoblasts on the porous iron-manganese scaffolds revealed that cells could develop filopodia on the scaffolds, but their viability was reduced by the effect of biodegradation. Altogether, this research marks a major breakthrough and demonstrates the great prospects of multi-material extrusion-based 3D printing to further address the remaining issues of porous iron-based materials and, eventually, develop ideal bone substitutes. Statement of significance: 3D printed porous iron biomaterials for bone substitution still encounter limitations, such as the slow biodegradation and magnetic resonance imaging incompatibility. Aiming to solve the two fundamental issues of iron, we present ex-situ alloyed porous iron-manganese scaffolds fabricated by means of multi-material extrusion-based 3D printing. Our porous iron-manganese possessed enhanced biodegradability, non-ferromagnetic property, and bone-mimicking mechanical property throughout the in vitro biodegradation period. The results demonstrated a great prospect of multi-material extrusion-based 3D printing to further address the remaining challenges of porous iron-based biomaterials to be an ideal biodegradable bone substitutes.
- Subjects :
- Scaffold
Materials science
Iron
Biomedical Engineering
Sintering
3D printing
Biochemistry
Biomaterials
Alloys
medicine
Porosity
Molecular Biology
Manganese
Material extrusion
Tissue Scaffolds
business.industry
technology, industry, and agriculture
Biomaterial
General Medicine
Biodegradation
equipment and supplies
Magnetic Resonance Imaging
Iron-manganese
Bone substitution
medicine.anatomical_structure
Chemical engineering
Printing, Three-Dimensional
Biodegradable
Extrusion
business
Cancellous bone
Biotechnology
Subjects
Details
- Language :
- English
- ISSN :
- 17427061
- Database :
- OpenAIRE
- Journal :
- Acta Biomaterialia, 134
- Accession number :
- edsair.doi.dedup.....7906ed5429ded14105ff3182bf42b9bb