Back to Search Start Over

BACE1 activity regulates cell surface contactin-2 levels

Authors :
Vivek Gautam
Dora M. Kovacs
Carla D’Avanzo
Matthias Hebisch
Doo Yeon Kim
Source :
Molecular Neurodegeneration
Publication Year :
2014
Publisher :
Springer Science and Business Media LLC, 2014.

Abstract

Background Although BACE1 is a major therapeutic target for Alzheimer’s disease (AD), potential side effects of BACE1 inhibition are not well characterized. BACE1 cleaves over 60 putative substrates, however the majority of these cleavages have not been characterized. Here we investigated BACE1-mediated cleavage of human contactin-2, a GPI-anchored cell adhesion molecule. Results Our initial protein sequence analysis showed that contactin-2 harbors a strong putative BACE1 cleavage site close to its GPI membrane linker domain. When we overexpressed BACE1 in CHO cells stably transfected with human contactin-2, we found increased release of soluble contactin-2 in the conditioned media. Conversely, pharmacological inhibition of BACE1 in CHO cells expressing human contactin-2 and mouse primary neurons decreased soluble contactin-2 secretion. The BACE1 cleavage site mutation 1008MM/AA dramatically impaired soluble contactin-2 release. We then asked whether contactin-2 release induced by BACE1 expression would concomitantly decrease cell surface levels of contactin-2. Using immunofluorescence and surface-biotinylation assays, we showed that BACE1 activity tightly regulates contactin-2 surface levels in CHO cells as well as in mouse primary neurons. Finally, contactin-2 levels were decreased in Alzheimer’s disease brain samples correlating inversely with elevated BACE1 levels in the same samples. Conclusion Our results clearly demonstrate that mouse and human contactin-2 are physiological substrates for BACE1. BACE1-mediated contactin-2 cleavage tightly regulates the surface expression of contactin-2 in neuronal cells. Given the role of contactin-2 in cell adhesion, neurite outgrowth and axon guidance, our data suggest that BACE1 may play an important role in these physiological processes by regulating contactin-2 surface levels.

Details

ISSN :
17501326
Volume :
9
Database :
OpenAIRE
Journal :
Molecular Neurodegeneration
Accession number :
edsair.doi.dedup.....78c9730e4ec0f64e64e6bf7a4b2def19
Full Text :
https://doi.org/10.1186/1750-1326-9-4