Back to Search Start Over

Computer-aided search for a cold-active cellobiose 2-epimerase

Authors :
Yaqin Xiao
Timo Stressler
Bo Jiang
Wenli Zhang
Lutz Fischer
Wanmeng Mu
Qiuming Chen
Source :
Journal of Dairy Science. 103:7730-7741
Publication Year :
2020
Publisher :
American Dairy Science Association, 2020.

Abstract

Cellobiose 2-epimerase (CE) is a promising industrial enzyme that can catalyze bioconversion of lactose to its high-value derivatives, namely epilactose and lactulose. A need exists in the dairy industry to catalyze lactose bioconversions at low temperatures to avoid microbial growth. We focused on the discovery of cold-active CE in this study. A genome mining method based on computational prediction was used to screen the potential genes encoding cold-active enzymes. The CE-encoding gene from Roseburia intestinalis, with a predicted high structural flexibility, was expressed heterologously in Escherichia coli. The catalytic property of the recombinant enzyme was extensively studied. The optimum temperature and pH of the enzyme were 45°C and 7.0, respectively. The specific activity of this enzyme to catalyze conversion of lactose to epilactose was measured to be 77.3 ± 1.6 U/mg. The kinetic parameters, including turnover number (kcat), Michaelis constant (Km), and catalytic efficiency (kcat/Km) using lactose as a substrate were 117.0 ± 7.7 s-1, 429.9 ± 57.3 mM, and 0.27 mM-1s-1, respectively. In situ production of epilactose was carried out at 8°C: 20.9% of 68.4 g/L lactose was converted into epilactose in 4 h using 0.02 mg/mL (1.5 U/mL, measured at 45°C) of recombinant enzyme. The enzyme discovered by this in silico method is suitable for low-temperature applications.

Details

ISSN :
00220302
Volume :
103
Database :
OpenAIRE
Journal :
Journal of Dairy Science
Accession number :
edsair.doi.dedup.....78c6abd31617f80f5f4eeb9ebb92f23e
Full Text :
https://doi.org/10.3168/jds.2020-18153