Back to Search Start Over

Solid-State NMR Study of Li-Assisted Dehydrogenation of Ammonia Borane

Authors :
Marek Pruski
Niraj K. Singh
Ihor Z. Hlova
Takeshi Kobayashi
Vitalij K. Pecharsky
Source :
Inorganic Chemistry. 51:4108-4115
Publication Year :
2012
Publisher :
American Chemical Society (ACS), 2012.

Abstract

The mechanism of thermochemical dehydrogenation of the 1:3 mixture of Li(3)AlH(6) and NH(3)BH(3) (AB) has been studied by the extensive use of solid-state NMR spectroscopy and theoretical calculations. The activation energy for the dehydrogenation is estimated to be 110 kJ mol(-1), which is lower than for pristine AB (184 kJ mol(-1)). The major hydrogen release from the mixture occurs at 60 and 72 °C, which compares favorably with pristine AB and related hydrogen storage materials, such as lithium amidoborane (LiNH(2)BH(3), LiAB). The NMR studies suggest that Li(3)AlH(6) improves the dehydrogenation kinetics of AB by forming an intermediate compound (LiAB)(x)(AB)(1-x). A part of AB in the mixture transforms into LiAB to form this intermediate, which accelerates the subsequent formation of branched polyaminoborane species and further release of hydrogen. The detailed reaction mechanism, in particular the role of lithium, revealed in the present study highlights new opportunities for using ammonia borane and its derivatives as hydrogen storage materials.

Details

ISSN :
1520510X and 00201669
Volume :
51
Database :
OpenAIRE
Journal :
Inorganic Chemistry
Accession number :
edsair.doi.dedup.....78c4e5f79e6f13bcdbbc8d205f227e93