Back to Search
Start Over
Analyzing body fat from depth images
- Source :
- 3DV
- Publication Year :
- 2018
- Publisher :
- IEEE, 2018.
-
Abstract
- We present a novel framework to directly estimate body fat percentage from depth images of human subjects and to visually evaluate salient points of the body shape related to the fat distribution. For this purpose, we created a novel, publicly available dataset including front and back depth images of a set of subjects with specific features (active young men or professional sportsmen) with associated ground truth fat values estimated with dual-energy x-ray absorptiometry (DXA) scanning. These depth images were obtained with depth rendering of an available dataset of whole body scans, simulating low-cost depth sensor acquisitions. We customized a ResNet-50 regressor to estimate fat percentage values directly from the front/back scans, achieving promising accuracy (standard errors of estimate SEE less than 2.1 on the depth renderings and 2.5 on a small set of real depth scans. We also demonstrate that, using a custom perturbation-based procedure for analyzing deep networks, it is possible to highlight, on subjects' depth images, the specific body areas related to fat accumulation (typically neck, shoulders, hip, and abdomen) and those characterizing skinny subjects (chest and abdomen).
- Subjects :
- Shoulders
Computer science
02 engineering and technology
Body fat percentage
Rendering (computer graphics)
Fat accumulation
0202 electrical engineering, electronic engineering, information engineering
medicine
biomedical application
fat estimation
neural networks
regression
0501 psychology and cognitive sciences
Computer vision
050107 human factors
Ground truth
business.industry
05 social sciences
020207 software engineering
Fat distribution
Torso
medicine.anatomical_structure
Artificial intelligence
business
Whole body
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- 3DV
- Accession number :
- edsair.doi.dedup.....785796f9d640aa1c2098bde47676a30c