Back to Search Start Over

No-idle parallel-machine scheduling of unit-time jobs with a small number of distinct release dates and deadlines

Authors :
Hélène Toussaint
Nadia Brauner
Alain Quilliot
Mikhail Y. Kovalyov
Recherche Opérationnelle pour les Systèmes de Production (G-SCOP_ROSP)
Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
United Institute of Informatics Problems (UIIP [Minsk])
National Academy of Sciences of Belarus (NASB)
Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS)
Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne)
Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA)
ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
Source :
Computers and Operations Research, Computers and Operations Research, 2021, 132, pp.105315. ⟨10.1016/j.cor.2021.105315⟩, Computers and Operations Research, Elsevier, 2021, 132, pp.105315. ⟨10.1016/j.cor.2021.105315⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

A problem of scheduling n unit-time jobs with a small number of distinct release dates and deadlines, on identical parallel machines, to minimize the number of active machines is studied. The feature that makes this problem challenging is that no machine can stand idle between its start and completion times. A number of properties of this problem is established, and heuristic and optimal algorithms based on these properties are designed. They include optimal algorithms with running times O ( k n k ) and O ( k n 2 3 n ) for the general case, where k is the number of distinct release dates and deadlines, optimal O ( n log n ) algorithms for the cases of a common release date or a common deadline, and an optimal O ( k n 2 ) algorithm for the case of agreeable release dates and deadlines. Algorithms to find lower and upper bounds on the optimal (minimal) number of active machines are developed, and an integer linear programming (ILP) formulation with O ( k ) variables and O ( k 2 ) constraints is provided. Computer experiments demonstrated that the ILP problem is solved by CPLEX to optimality within a few hours for n ≤ 400 and k ≤ 50 , and that the quality of the lower and upper bounds is sufficiently good.

Details

Language :
English
ISSN :
03050548 and 1873765X
Database :
OpenAIRE
Journal :
Computers and Operations Research, Computers and Operations Research, 2021, 132, pp.105315. ⟨10.1016/j.cor.2021.105315⟩, Computers and Operations Research, Elsevier, 2021, 132, pp.105315. ⟨10.1016/j.cor.2021.105315⟩
Accession number :
edsair.doi.dedup.....783ea4cefbbeafb6f84e72513bfaf999
Full Text :
https://doi.org/10.1016/j.cor.2021.105315⟩