Back to Search Start Over

Bivariate Empirical Mode Decomposition

Authors :
Patrick Flandrin
P. Gonalves
Jonathan M. Lilly
Gabriel Rilling
Laboratoire de Physique de l'ENS Lyon (Phys-ENS)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de l'Informatique du Parallélisme (LIP)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Earth and Space Research Institute [Seattle] (ESR)
École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Flandrin, Patrick
Gonçalves, Paulo
Source :
IEEE Signal Processing Letters, IEEE Signal Processing Letters, 2007, 14 (12), pp.936-939, IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2007, 14 (12), pp.936-939
Publication Year :
2007
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2007.

Abstract

10 pages, 3 figures. Submitted to Signal Processing Letters, IEEE. Matlab/C codes and additional material are downloadable from http://perso.ens-lyon.fr/patrick.flandrin; The Empirical Mode Decomposition (EMD) has been introduced quite recently to adaptively decompose nonstationary and/or nonlinear time series. The method being initially limited to real-valued time series, we propose here an extension to bivariate (or complex-valued) time series which generalizes the rationale underlying the EMD to the bivariate framework. Where the EMD extracts zero-mean oscillating components, the proposed bivariate extension is designed to extract zero-mean rotating components. The method is illustrated on a real-world signal and properties of the output components are discussed. Free Matlab/C codes are available at http://perso.ens-lyon.fr/patrick.flandrin.

Details

ISSN :
15582361 and 10709908
Volume :
14
Database :
OpenAIRE
Journal :
IEEE Signal Processing Letters
Accession number :
edsair.doi.dedup.....77f06223504651b78367fc0cf3de6c79
Full Text :
https://doi.org/10.1109/lsp.2007.904710