Back to Search Start Over

Fibronectin-Tissue Transglutaminase Matrix Rescues RGD-impaired Cell Adhesion through Syndecan-4 and β1 Integrin Co-signaling*S⃞

Authors :
Martin Griffin
Martin J. Humphries
Huveyda Basaga
Dilek Telci
Manuela Baccarini
Xiaoling Li
Zhuo Wang
Elisabetta A.M. Verderio
Publication Year :
2008
Publisher :
American Society for Biochemistry and Molecular Biology, 2008.

Abstract

Heterotropic association of tissue transglutaminase (TG2) with extracellular matrix-associated fibronectin (FN) can restore the adhesion of fibroblasts when the integrin-mediated direct binding to FN is impaired using RGD-containing peptide. We demonstrate that the compensatory effect of the TG-FN complex in the presence of RGD-containing peptides is mediated by TG2 binding to the heparan sulfate chains of the syndecan-4 cell surface receptor. This binding mediates activation of protein kinase Calpha (PKCalpha) and its subsequent interaction with beta(1) integrin since disruption of PKCalpha binding to beta(1) integrins with a cell-permeant competitive peptide inhibits cell adhesion and the associated actin stress fiber formation. Cell signaling by this process leads to the activation of focal adhesion kinase and ERK1/2 mitogen-activated protein kinases. Fibroblasts deficient in Raf-1 do not respond fully to the TG-FN complex unless either the full-length kinase competent Raf-1 or the kinase-inactive domain of Raf-1 is reintroduced, indicating the involvement of the Raf-1 protein in the signaling mechanism. We propose a model for a novel RGD-independent cell adhesion process that could be important during tissue injury and/or remodeling whereby TG-FN binding to syndecan-4 activates PKCalpha leading to its association with beta(1) integrin, reinforcement of actin-stress fiber organization, and MAPK pathway activation.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....77eade46b4656945a19224b3741ea256