Back to Search
Start Over
The effect of clinical application of transcranial direct current stimulation combined with non-immersive virtual reality rehabilitation in stroke patients
- Source :
- Technology and Health Care. 30:117-127
- Publication Year :
- 2021
- Publisher :
- IOS Press, 2021.
-
Abstract
- BACKGROUND: The ability to manipulate the upper limbs and fingers of stroke patients is very important for independent daily life. Among the latest approaches for upper limb rehabilitation training, transcranial direct current stimulation (tDCS) is a non-invasive stimulation method that stimulates the cranial nerves by attaching electrodes to the scalp. In addition, virtual reality (VR) is an intervention method that provides an environment similar to reality and can help restore function by performing body movements as if playing a game. In addition, VR is an intervention method that provides an environment similar to reality and helps to recover functions by performing body movements as if playing a game. OBJECTIVE: This study was conducted to investigate the effect of anodal tDCS applied to the ipsilateral primary motor cortex (M1) during VR training on the upper limb function, cognition, and executive function of stroke patients. METHODS: After 20 patients were randomly assigned to the experimental group and the control group, the experimental group received tDCS and VR, and the control group received sham tDCS and VR for 20 minutes a day, 5 days a week, for a total of 4 weeks. Participants were evaluated for upper limb function using Box and Block Test (BBT) and Jebsen-Taylor Hand Function Test (JTHFT), and cognitive and executive function using the Stroop Test (ST) and Trail Making Test (TMT). RESULTS: In the experimental group, significant differences were found in the pre- and post-test for the all variance (p< 0.05). Control group is significant differences were found in the pre- and post-test for BBT, ST, TMT (p< 0.05). There were significant differences between the two groups in the post test of BBT and ST (p< 0.05). CONCLUSION: The results of this study suggest that anodal tDCS applied to the ipsilateral M1 during VR training is effective for upper limb function, cognitive function, and executive function in stroke patients.
- Subjects :
- 030506 rehabilitation
medicine.medical_specialty
medicine.medical_treatment
Trail Making Test
Biomedical Engineering
Biophysics
Health Informatics
Bioengineering
Virtual reality
Transcranial Direct Current Stimulation
Upper Extremity
Biomaterials
03 medical and health sciences
0302 clinical medicine
Physical medicine and rehabilitation
medicine
Humans
Stroke
Rehabilitation
Transcranial direct-current stimulation
business.industry
Stroke Rehabilitation
Virtual Reality
Cognition
Recovery of Function
medicine.disease
Primary motor cortex
0305 other medical science
business
030217 neurology & neurosurgery
Information Systems
Stroop effect
Subjects
Details
- ISSN :
- 18787401 and 09287329
- Volume :
- 30
- Database :
- OpenAIRE
- Journal :
- Technology and Health Care
- Accession number :
- edsair.doi.dedup.....77e768195261d3e2d776762653d4d9a6
- Full Text :
- https://doi.org/10.3233/thc-212991