Back to Search
Start Over
Bimetallic M/N/C catalysts prepared from π-expanded metal salen precursors toward an efficient oxygen reduction reaction
- Source :
- RSC advances. 8(6)
- Publication Year :
- 2017
-
Abstract
- Nonprecious metal electrocatalysts are being explored as alternatives to platinum-group metal electrocatalysts for the oxygen reduction reaction (ORR) which is required for cathode materials in fuel cells. Herein, we describe a new method for preparing bimetallic nitrogen-containing carbon catalysts with high ORR activity using π-expanded M(salen) precursors. The M/N/C and bimetallic FeM/N/C ORR catalysts were obtained by pyrolysis of a mixture of a carbon support (Vulcan XC-72R) and the metal complex as a precursor. The bimetallic FeCu catalyst prepared from Fe and Cu complexes with the N,N′-bis(2-hydroxy-1-naphthylidene)-1,2-phenylenediamine ligand (2NAPD) is found to have an onset potential of 0.87 V, which is positively shifted by 50 mV from that of the catalyst prepared from the monometallic Fe(2NAPD) complex. The FeCu/N/C catalyst promotes efficient four-electron reduction in the ORR. High-resolution transmission electron microscopy studies reveal that both Fe and Cu metals together with pyridinic nitrogen species are highly dispersed within the carbonaceous structure in FeCu/2NAPD@VC, suggesting that the N-coordinated Fe and Cu sites promote efficient four-electron reduction of O2. This new methodology facilitates design of nonprecious bimetallic carbon catalysts with excellent ORR activity.
- Subjects :
- Ligand
General Chemical Engineering
Inorganic chemistry
chemistry.chemical_element
02 engineering and technology
General Chemistry
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
Cathode
0104 chemical sciences
Catalysis
law.invention
Metal
chemistry
Transmission electron microscopy
law
visual_art
visual_art.visual_art_medium
0210 nano-technology
Bimetallic strip
Pyrolysis
Carbon
Subjects
Details
- ISSN :
- 20462069
- Volume :
- 8
- Issue :
- 6
- Database :
- OpenAIRE
- Journal :
- RSC advances
- Accession number :
- edsair.doi.dedup.....77d7a4ff2d951a8481815b9ebb24252a