Back to Search Start Over

Mechanical Characterization of PDMS Films for the Optimization of Polymer Based Flexible Capacitive Pressure Microsensors

Authors :
Emile Martincic
Elisabeth Dufour-Gergam
Pierre-Yves Joubert
Thi Hong Nhung Dinh
Source :
Journal of Sensors, Vol 2017 (2017)
Publication Year :
2017
Publisher :
Hindawi, 2017.

Abstract

This paper reports on the optimization of flexible PDMS-based normal pressure capacitive microsensors dedicated to wearable applications. The operating principle and the fabrication process of such microsensors are presented. Then, the deformations under local pressure of PDMS thin films of thicknesses ranging from 100 μm to 10 mm are studied by means of numerical simulations in order to foresee the sensitivity of the considered microsensors. The study points out that, for a given PDMS type, the sensor form ratio plays a major role in its sensitivity. Indeed, for a given PDMS film, the expected capacitance change under a 10 N load applied on a 1.7 mm radius electrode varies from a few percent to almost 40% according to the initial PDMS film thickness. These observations are validated by experimental characterizations carried out on PDMS film samples of various thicknesses (10 μm to 10 mm) and on actual microsensors. Further computations enable generalized sensor design rules to be highlighted. Considering practical limitations in the fabrication and in the implementation of the actual microsensors, design rules based on computed form ratio optimization lead to the elaboration of flexible pressure microsensors exhibiting a sensitivity which reaches up to10%/N.

Details

Language :
English
ISSN :
1687725X
Database :
OpenAIRE
Journal :
Journal of Sensors
Accession number :
edsair.doi.dedup.....77d0fad80c31f69c2cc375d96c455657
Full Text :
https://doi.org/10.1155/2017/8235729