Back to Search
Start Over
Elastomeric cardiopatch scaffold for myocardial repair and ventricular support
- Source :
- RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
- Publication Year :
- 2020
- Publisher :
- Oxford University Press, 2020.
-
Abstract
- [EN] OBJECTIVES: Prevention of postischaemic ventricular dilatation progressing towards pathological remodelling is necessary to decrease ventricular wall deterioration. Myocardial tissue engineering may play a therapeutic role due to its capacity to replace the extracellular matrix, thereby creating niches for cell homing. In this experimental animal study, a biomimetic cardiopatch was created with elastomeric scaffolds and nanotechnologies. METHODS: In an experimental animal study in 18 sheep, a cardiopatch was created with adipose tissue-derived progenitor cells seeded into an engineered bioimplant consisting of 3-dimensional bioabsorbable polycaprolactone scaffolds filled with a peptide hydrogel (PuraMatrix (TM)). This patch was then transplanted to cover infarcted myocardium. Non-absorbable poly(ethyl) acrylate polymer scaffolds were used as controls. RESULTS: Fifteen sheep were followed with ultrasound scans at 6 months, including echocardiography scans, tissue Doppler and spectral flow analysis and speckle-tracking imaging, which showed a reduction in longitudinal left ventricular deformation in the cardiopatch-treated group. Magnetic resonance imaging (late gadolinium enhancement) showed reduction of infarct size relative to left ventricular mass in the cardiopatch group versus the controls. Histopathological analysis at 6 months showed that the cardiopatch was fully anchored and integrated to the infarct area with minimal fibrosis interface, thereby promoting angiogenesis and migration of adipose tissue-derived progenitor cells to surrounding tissues. CONCLUSIONS: This study shows the feasibility and effectiveness of a cardiopatch grafted onto myocardial infarction scars in an experimental animal model. This treatment decreased fibrosis, limited infarct scar expansion and reduced postischaemic ventricular deformity. A capillary network developed between our scaffold and the heart. The elastomeric cardiopatch seems to have a positive impact on ventricular remodelling and performance in patients with heart failure.<br />The RECATABI Project (Regeneration of Cardiac Tissue Assisted by Bioactive Implants) was financially supported by the 7th Framework Programme (FP7) of the European Commission. Project ID: 229239. Funded under FP7-NMP and the European Regional Development Fund (FEDER Spain).
- Subjects :
- Pulmonary and Respiratory Medicine
Scaffold
European Regional Development Fund
Contrast Media
Gadolinium
Heart failure
030204 cardiovascular system & hematology
Cardiac tissue engineering
Cardiopatch
03 medical and health sciences
0302 clinical medicine
Nursing
Animals
Humans
Medicine
European commission
030304 developmental biology
0303 health sciences
Sheep
Tissue Engineering
Tissue Scaffolds
Ventricular Remodeling
business.industry
Myocardium
Ventricular wall
Translational and clinical research
General Medicine
3. Good health
Elastomeric scaffold
Cardiowrap
MAQUINAS Y MOTORES TERMICOS
Surgery
Ultrasonography
Cardiology and Cardiovascular Medicine
business
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
- Accession number :
- edsair.doi.dedup.....77b9b3d5afc8257ab57719fa3e4eb81b