Back to Search Start Over

Astrocytic Kir4.1 channels regulate locomotion by orchestrating neuronal rhythmicity in the spinal network

Authors :
Tony Barbay
Emilie Pecchi
Myriam Ducrocq
Nathalie Rouach
Frédéric Brocard
Rémi Bos
Institut de Neurosciences de la Timone (INT)
Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
Centre interdisciplinaire de recherche en biologie (CIRB)
Labex MemoLife
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Université Paris sciences et lettres (PSL)
Source :
Glia, Glia, 2023, ⟨10.1002/glia.24337⟩
Publication Year :
2023
Publisher :
Wiley, 2023.

Abstract

International audience; Neuronal rhythmogenesis in the spinal cord is correlated with variations in extracellular K + levels ([K + ] e). Astrocytes play important role in [K + ] e homeostasis and compute neuronal information. Yet it is unclear how neuronal oscillations are regulated by astrocytic K + homeostasis. Here we identify the astrocytic inward-rectifying K + channel Kir4.1 (a.k.a. Kcnj10) as a key molecular player for neuronal rhythmicity in the spinal central pattern generator (CPG). By combining two-photon calcium imaging with electrophysiology, immunohistochemistry and genetic tools, we report that astrocytes display Ca 2+ transients before and during oscillations of neighboring neurons. Inhibition of astrocytic Ca 2+-transients with BAPTA decreases the barium-sensitive Kir4.1 current responsible of K + clearance. Finally, we show in mice that Kir4.1 knockdown in astrocytes progressively prevents neuronal oscillations and alters the locomotor pattern resulting in lower motor performances in challenging tasks. These data identify astroglial Kir4.1 channels as key regulators of neuronal rhythmogenesis in the CPG driving locomotion.

Details

ISSN :
10981136 and 08941491
Volume :
71
Database :
OpenAIRE
Journal :
Glia
Accession number :
edsair.doi.dedup.....77b278adab912a0789ae4f793a5e9883
Full Text :
https://doi.org/10.1002/glia.24337