Back to Search Start Over

Ventilation Changes Drive Orbital-Scale Deoxygenation Trends in the Late Cretaceous Ocean

Authors :
A.‐C. Sarr
Y. Donnadieu
M. Laugié
J.‐B. Ladant
B. Suchéras‐Marx
F. Raisson
Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE)
Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
TotalEnergies
2019-A0050102212, 2020-A0090102212, 2021-A0110102212
Grand Équipement National De Calcul Intensif, GENCI
The authors acknowledge Olivier Aumont, Christian Ethé and Laurent Bopp for their contribution to the development of the adapted version of the PISCES code for deep-time simulations. The authors thank the CEA/CCRT for providing access to the HPC resources of TGCC under the allocation 2019-A0050102212, 2020-A0090102212 and 2021-A0110102212 made by GENCI. The authors thank TotalEnergies for funding the project and granting permission to publish. The authors are also grateful to David de Vleeschouwer and Michel Crucifix for their comments and reviews.
Source :
Geophysical Research Letters, Geophysical Research Letters, 2022, 49 (19), pp.e2022GL099830. ⟨10.1029/2022GL099830⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; Mechanisms that drive cyclicity in marine sediment deposits during hothouse climate periods in response to Earth's orbit variations remain debated. Orbital cycles fingerprint in the oceanographic records results from the combined effect of terrestrial (e.g., Weathering derived nutrient supply, freshwater discharge) and oceanic (e.g., productivity, oxygenation) processes, whose respective contribution remains to be clarified. Here we investigate the effect of extreme orbital configurations on the oxygenation state of the ocean using marine biogeochemistry simulations with the IPSL-CM5A2 Earth System Model under Cenomanian-Turonian boundary conditions. Our simulations show that small changes in ocean ventilation triggered by orbitally induced variations in deep water formation have a strong impact on the spatial distribution of dissolved oxygen. This phenomena is amplified in enclosed and already poorly oxygenated basins, such as the proto-Atlantic ocean, where up to 50% of the water volume become anoxic for some of the configurations.

Details

Language :
English
ISSN :
00948276 and 19448007
Database :
OpenAIRE
Journal :
Geophysical Research Letters, Geophysical Research Letters, 2022, 49 (19), pp.e2022GL099830. ⟨10.1029/2022GL099830⟩
Accession number :
edsair.doi.dedup.....77b1b165a51b76e829148ea3bbaa1c32