Back to Search Start Over

Fixed-point semantics for barebone relational concept analysis

Authors :
Jérôme Euzenat
Evolution de la connaissance (MOEX )
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Agnès Braud
Aleksey Buzmakov
Tom Hanika
Florence Le Ber
ANR-17-CE23-0007,ELKER,Étendre les clés de liage: extraction et raisonnement(2017)
ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019)
Source :
Proc. 16th international conference on formal concept analysis (ICFCA), ICFCA-16th international conference on formal concept analysis, ICFCA-16th international conference on formal concept analysis, Jul 2021, Strasbourg, France. pp.20-37, ⟨10.1007/978-3-030-77867-5_2⟩, Formal Concept Analysis ISBN: 9783030778668, ICFCA
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Relational concept analysis (RCA) extends formal concept analysis (FCA) by taking into account binary relations between formal contexts. It has been designed for inducing description logic TBoxes from ABoxes, but can be used more generally. It is especially useful when there exist circular dependencies between objects. In this case, it extracts a unique stable concept lattice family grounded on the initial formal contexts. However, other stable families may exist whose structure depends on the same relational context. These may be useful in applications that need to extract a richer structure than the minimal grounded one. This issue is first illustrated in a reduced version of RCA, which only retains the relational structure. We then redefine the semantics of RCA on this reduced version in terms of concept lattice families closed by a fixed-point operation induced by this relational structure. We show that these families admit a least and greatest fixed point and that the well-grounded RCA semantics is characterised by the least fixed point. We then study the structure of other fixed points and characterise the interesting lattices as the self-supported fixed points.

Details

Language :
English
ISBN :
978-3-030-77866-8
ISBNs :
9783030778668
Database :
OpenAIRE
Journal :
Proc. 16th international conference on formal concept analysis (ICFCA), ICFCA-16th international conference on formal concept analysis, ICFCA-16th international conference on formal concept analysis, Jul 2021, Strasbourg, France. pp.20-37, ⟨10.1007/978-3-030-77867-5_2⟩, Formal Concept Analysis ISBN: 9783030778668, ICFCA
Accession number :
edsair.doi.dedup.....77aebebb48dc8e9d8b55732399e56b70
Full Text :
https://doi.org/10.1007/978-3-030-77867-5_2⟩