Back to Search Start Over

Rice lectin protein r40c1 imparts drought tolerance by modulatingS-adenosylmethionine synthase 2, stress-associated protein 8 and chromatin-associated proteins

Authors :
Chandan Roy
Soumitra Paul
Riddhi Datta
Salman Sahid
Source :
Journal of Experimental Botany. 71:7331-7346
Publication Year :
2020
Publisher :
Oxford University Press (OUP), 2020.

Abstract

Lectin proteins play an important role in biotic and abiotic stress responses in plants. Although the rice lectin protein Osr40c1 has been reported to be regulated by drought stress, the mechanism of its drought tolerance activity has not been studied so far. In this study, it is shown that expression of the Osr40c1 gene correlates with the drought tolerance potential of various rice cultivars. Transgenic rice plants overexpressing Osr40c1 were significantly more tolerant to drought stress than the wild-type plants. Furthermore, ectopic expression of the Osr40c1 gene in tobacco yielded a similar result. Interestingly, the protein displayed a nucleo-cytoplasmic localization and was found to interact with a number of drought-responsive proteins such as S-adenosylmethionine synthase 2 (OsSAM2), stress-associated protein 8 (OsSAP8), DNA-binding protein MNB1B (OsMNB1B), and histone 4 (OsH4). Silencing of each of these protein partners led to drought sensitivity in otherwise tolerant Osr40c1-expressing transgenic tobacco lines indicating that these partners were crucial for the Osr40c1-mediated drought tolerance in planta. Moreover, the association of Osr40c1 with these partners occurred specifically under drought stress forming a multi-protein complex. Together, our findings delineate a novel role of Osr40c1 in imparting drought tolerance by regulating OsMNB1B, OsSAM2, and OsH4 proteins, which presumably enables OsSAP8 to induce downstream gene expression.

Details

ISSN :
14602431 and 00220957
Volume :
71
Database :
OpenAIRE
Journal :
Journal of Experimental Botany
Accession number :
edsair.doi.dedup.....779d7fe6b11ddb5fd92d045105befa98
Full Text :
https://doi.org/10.1093/jxb/eraa400