Back to Search Start Over

Physically sound, self-learning digital twins for sloshing fluids

Authors :
Beatriz Moya
Francisco Chinesta
Elías Cueto
David González
Icíar Alfaro
University of Zaragoza - Universidad de Zaragoza [Zaragoza]
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)
Source :
PLoS ONE, PLoS ONE, Public Library of Science, 2020, 15 (6), pp.1-15. ⟨10.1371/journal.pone.0234569⟩, Zaguán. Repositorio Digital de la Universidad de Zaragoza, instname, Zaguán: Repositorio Digital de la Universidad de Zaragoza, Universidad de Zaragoza, PLoS ONE, Vol 15, Iss 6, p e0234569 (2020)
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in simulation-assisted decision making. The proposed method infers the (linear or non-linear) constitutive behavior of the fluid from video sequences of the sloshing phenomena. Real-time prediction of the fluid response is obtained from a reduced order model (ROM) constructed by means of thermodynamics-informed data-driven learning. From these data, we aim to predict the future response of a twin fluid reacting to the movement of the real container. The constructed system is able to perform accurate forecasts of its future reactions to the movements of the containers. The system is completed with augmented reality techniques, so as to enable comparisons among the predicted result with the actual response of the same liquid and to provide the user with insightful information about the physics taking place.

Details

Language :
English
ISSN :
19326203
Database :
OpenAIRE
Journal :
PLoS ONE, PLoS ONE, Public Library of Science, 2020, 15 (6), pp.1-15. ⟨10.1371/journal.pone.0234569⟩, Zaguán. Repositorio Digital de la Universidad de Zaragoza, instname, Zaguán: Repositorio Digital de la Universidad de Zaragoza, Universidad de Zaragoza, PLoS ONE, Vol 15, Iss 6, p e0234569 (2020)
Accession number :
edsair.doi.dedup.....7784333bd9e83c5fb2b9d61d4f2f3d9d