Back to Search Start Over

Expression and purification of a recombinant ELRL-MAP30 with dual-targeting anti-tumor bioactivity

Authors :
Qiu-wen Lou
Wei-wei Chen
Zhen-hong Zhu
Zhe-yue Zhou
Hong-rui Zhang
Zhi-Guang Huang
Xin-yi Jiang
Source :
Protein Expression and Purification. 185:105893
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

MAP30 (Momordica antiviral protein 30kD) is a single-chain Ⅰ-type ribosome inactivating protein with a variety of biological activities, including anti-tumor ability. It was reported that MAP30 would serve as a novel and relatively safe agent for prophylaxis and treatment of liver cancer. To determine whether adding two tumor targeting peptides could improve the antitumor activities of MAP30, we genetically modified MAP30 with an RGD motif and a EGFRi motif, which is a ligand with high affinity for αvβ3 integrins and with high affinity for EGFR. The recombinant protein ELRL-MAP30 (rELRL-MAP30) containing a GST-tag was expressed in E. coli. The rELRL-MAP30 was highly expressed in the soluble fraction after induction with 0.15 mM IPTG for 20 h at 16 °C. The purified rELRL-MAP30 appeared as a band on SDS–PAGE. It was identified by western blotting. Cytotoxicity of recombinant protein to HepG2, MDA-MB-231, HUVEC and MCF-7 cells was detected by MTT analysis. Half maximal inhibitory concentration (IC50) values were 54.64 μg/mL, 70.13 μg/mL, 146 μg/mL, 466.4 μg/mL, respectively. Proliferation inhibition assays indicated that rELRL-MAP30 could inhibit the growth of Human liver cancer cell HepG2 effectively. We found that rELRL-MAP30 significantly induced apoptosis in liver cancer cells, as evidenced by nuclear staining of DAPI. In addition, rELRL-MAP30 induced apoptosis in human liver cancer HepG2 cells by up-regulation of Bax as well as down-regulation of Bcl-2. Migration of cell line were markedly inhibited by rELRL-MAP30 in a dose-dependent manner compared to the recombinant MAP30 (rMAP30). In summary, the fusion protein displaying extremely potent cytotoxicity might be highly effective for tumor therapy.

Details

ISSN :
10465928
Volume :
185
Database :
OpenAIRE
Journal :
Protein Expression and Purification
Accession number :
edsair.doi.dedup.....7779f2a436d36055a0d6579de7ef1852