Back to Search Start Over

Computational Evaluation of Suspended Microcantilever and Microfluidic Channel

Authors :
Dimitrios I. Fotiadis
Iakovos Gavalas
Source :
EMBC
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

In this study, a static mode suspended microcantilever model was simulated employing the Finite Elements Method (FEM), to examine the deflection of the microcantilever's beam using Newtonian and Non-Newtonian fluids. The scope of this work is to design and simulate a suspended microcantilever biosensor for the determination of the fluids' dynamic viscosity and the relationship between the blood's hematocrit and the biosensor's sensitivity. These biosensors are microstructures which consist of a microfluidic channel embedded in a microcantilever biosensor. Fluid Structure Interaction (FSI) simulations performed to study the deflection of the microcantilever when Newtonian and Non-Newtonian fluids with different dynamic viscosity are used. For the dynamic viscosity determination of the Non-Newtonian fluids, the Brid-Carreau model was used. The results indicate a proportional relation between the beam's deflection and the fluids' dynamic viscosity.

Details

Database :
OpenAIRE
Journal :
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Accession number :
edsair.doi.dedup.....774742ac6c926140d7908b1f569e8e3f