Back to Search Start Over

Counting Partial Spread Functions in Eight Variables

Authors :
Xiang-dong Hou
Philippe Langevin
Institut de Mathématiques de Toulon - EA 2134 (IMATH)
Université de Toulon (UTLN)
Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG)
Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Langevin, Philippe
Source :
IEEE Transactions on Information Theory, IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2011, 57 (4), pp.2263--2269
Publication Year :
2011
Publisher :
Institute of Electrical and Electronics Engineers, 2011.

Abstract

In this paper we report the following computational results on partial spread functions in eight variables: (i) the numbers of equivalence classes of partial spread functions (in eight variables) of all possible orders; (ii) the total number of partial spread bent functions in eight variables; (iii) the distribution of the cardinalities of stabilizers (in GL(8, F2)) of partial spread bent functions in eight variables. The computational method is also described.

Details

Language :
English
ISSN :
00189448
Database :
OpenAIRE
Journal :
IEEE Transactions on Information Theory, IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2011, 57 (4), pp.2263--2269
Accession number :
edsair.doi.dedup.....773e37ce4190a7ad99b0ccec96ac782d