Back to Search
Start Over
A singular Sturm–Liouville equation under homogeneous boundary conditions
- Source :
- Journal of Functional Analysis. 261:1542-1590
- Publication Year :
- 2011
- Publisher :
- Elsevier BV, 2011.
-
Abstract
- Given α > 0 and f ∈ L 2 ( 0 , 1 ) , we are interested in the equation { − ( x 2 α u ′ ( x ) ) ′ + u ( x ) = f ( x ) on ( 0 , 1 ] , u ( 1 ) = 0 . We prescribe appropriate (weighted) homogeneous boundary conditions at the origin and prove the existence and uniqueness of H loc 2 ( 0 , 1 ] solutions. We study the regularity at the origin of such solutions. We perform a spectral analysis of the differential operator L u : = − ( x 2 α u ′ ) ′ + u under those appropriate homogeneous boundary conditions.
- Subjects :
- 010102 general mathematics
Essential spectrum
Mathematical analysis
Singular Sturm–Liouville
Sturm–Liouville theory
Differential operator
01 natural sciences
Sturm separation theorem
010101 applied mathematics
Homogeneous
Weighted Sobolev spaces
Spectral analysis
Uniqueness
Boundary value problem
0101 mathematics
Analysis
Mathematics
Subjects
Details
- ISSN :
- 00221236
- Volume :
- 261
- Database :
- OpenAIRE
- Journal :
- Journal of Functional Analysis
- Accession number :
- edsair.doi.dedup.....772cc07aed5d49cb084a395057c7d656