Back to Search Start Over

Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si

Authors :
Feng, Baojie
Fu, Botao
Kasamatsu, Shusuke
Ito, Suguru
Cheng, Peng
Liu, Cheng Cheng
Feng, Ya
Wu, Shilong
Mahatha, Sanjoy K.
Sheverdyaeva, Polina
Moras, Paolo
Arita, Masashi
Sugino, Osamu
Chiang, Tai Chang
Shimada, Kenya
Miyamoto, Koji
Okuda, Taichi
Wu, Kehui
Chen, Lan
Yao, Yugui
Matsuda, Iwao
Source :
Nature communications 8 (2017): 1007. doi:10.1038/s41467-017-01108-z, info:cnr-pdr/source/autori:Feng, Baojie; Feng, Baojie; Fu, Botao; Kasamatsu, Shusuke; Ito, Suguru; Cheng, Peng; Liu, Cheng Cheng; Feng, Ya; Feng, Ya; Wu, Shilong; Mahatha, Sanjoy K.; Sheverdyaeva, Polina; Moras, Paolo; Arita, Masashi; Sugino, Osamu; Chiang, Tai Chang; Shimada, Kenya; Miyamoto, Koji; Okuda, Taichi; Wu, Kehui; Chen, Lan; Yao, Yugui; Matsuda, Iwao/titolo:Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2<%2Finf>Si/doi:10.1038%2Fs41467-017-01108-z/rivista:Nature communications/anno:2017/pagina_da:1007/pagina_a:/intervallo_pagine:1007/volume:8, Nature Communications, Nature Communications, Vol 8, Iss 1, Pp 1-6 (2017)
Publication Year :
2017
Publisher :
Nature Publishing Group., London , Regno Unito, 2017.

Abstract

Topological nodal line semimetals, a novel quantum state of materials, possess topologically nontrivial valence and conduction bands that touch at a line near the Fermi level. The exotic band structure can lead to various novel properties, such as long-range Coulomb interaction and flat Landau levels. Recently, topological nodal lines have been observed in several bulk materials, such as PtSn4, ZrSiS, TlTaSe2 and PbTaSe2. However, in two-dimensional materials, experimental research on nodal line fermions is still lacking. Here, we report the discovery of two-dimensional Dirac nodal line fermions in monolayer Cu2Si based on combined theoretical calculations and angle-resolved photoemission spectroscopy measurements. The Dirac nodal lines in Cu2Si form two concentric loops centred around the Γ point and are protected by mirror reflection symmetry. Our results establish Cu2Si as a platform to study the novel physical properties in two-dimensional Dirac materials and provide opportunities to realize high-speed low-dissipation devices.&lt;br /&gt;Nodal line semimetals have been observed in three-dimensional materials but are missing in two-dimensional counterparts. Here, Feng et al. report two-dimensional Dirac nodal line fermions protected by mirror reflection symmetry in monolayer Cu2Si.

Details

Language :
English
Database :
OpenAIRE
Journal :
Nature communications 8 (2017): 1007. doi:10.1038/s41467-017-01108-z, info:cnr-pdr/source/autori:Feng, Baojie; Feng, Baojie; Fu, Botao; Kasamatsu, Shusuke; Ito, Suguru; Cheng, Peng; Liu, Cheng Cheng; Feng, Ya; Feng, Ya; Wu, Shilong; Mahatha, Sanjoy K.; Sheverdyaeva, Polina; Moras, Paolo; Arita, Masashi; Sugino, Osamu; Chiang, Tai Chang; Shimada, Kenya; Miyamoto, Koji; Okuda, Taichi; Wu, Kehui; Chen, Lan; Yao, Yugui; Matsuda, Iwao/titolo:Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2<%2Finf>Si/doi:10.1038%2Fs41467-017-01108-z/rivista:Nature communications/anno:2017/pagina_da:1007/pagina_a:/intervallo_pagine:1007/volume:8, Nature Communications, Nature Communications, Vol 8, Iss 1, Pp 1-6 (2017)
Accession number :
edsair.doi.dedup.....771d07ecc0a581bb6cf15d82577f678a