Back to Search Start Over

Heme oxygenase-1 induction mitigates burn-associated early acute kidney injury via the TLR4 signaling pathway

Authors :
Meirong Yu
Quan Fang
Chuangang You
Xingang Wang
Chunmao Han
Songxue Guo
Liping Zhang
Yong Liu
Source :
Burns. 48:156-167
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

Objectives Early acute kidney injury (AKI) after burn contributes to disastrous prognoses for severely burned patients. Burn-induced renal oxidative stress and secondary proinflammatory mediator release contribute to early AKI development, and Toll-like receptor (TLR) 4 regulates inflammation. Heme oxygenase-1 (HO-1) is a stress-responsive enzyme that plays a vital role in protecting against ischemia-induced organ injury via its antioxidant properties and regulation of inflammation. We investigated the potential effect of HO-1 induction in preventing burn-induced early AKI and its related mechanism. Methods A classic major-burn rat model was established using a 100 °C water bath, and hemin was injected intraperitoneally immediately after the injury to induce HO-1. Histological staining and blood tests were used to assess AKI progression based on structural changes and function. Renal levels of HO-1, oxidative stress, proinflammatory mediators and TLR4-related signals were detected using ELISA, immunostaining, qRT-PCR, and western blotting. The selective TLR4 inhibitor TAK242 and TLR4 inducer LPS were introduced to determine the roles of HO-1 in burn-related renal inflammation and the TLR4 pathway. Results Hemin improved burn-induced renal histological damage and dysfunction, and this beneficial effect was related to reduced renal oxidative stress and the release of proinflammatory mediators, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6 and intracellular adhesion molecule-1 (ICAM-1). Hemin downregulated the expression of TLR4 and the subsequent phosphorylation of IKKα/β, IκBα, and NF-κB p65;. TAK242 exerted an effect similar to but weaker than hemin; and LPS reversed the antiinflammatory effect of hemin and the regulation of TLR4 signals. These results suggested that the TLR4 signaling pathway mediated the HO-1-facilitated regulation of renal inflammation after burn. Conclusion The present study demonstrated that HO-1 induction prevented burn-induced early AKI by targeting renal inflammation, which was mediated via regulation of the TLR4/NF-κB signaling pathway.

Details

ISSN :
03054179
Volume :
48
Database :
OpenAIRE
Journal :
Burns
Accession number :
edsair.doi.dedup.....7719ee07e3b99a9916554838ee8ab0f9
Full Text :
https://doi.org/10.1016/j.burns.2021.04.013