Back to Search Start Over

Adsorption Properties of Polyvinyl-Alcohol-Grafted Particles Toward Genistein Driven by Hydrogen-Bond Interaction

Authors :
Baojiao Gao
Zeqing Xu
Yanyan Zhang
Source :
The Journal of Physical Chemistry B. 117:5730-5736
Publication Year :
2013
Publisher :
American Chemical Society (ACS), 2013.

Abstract

The adsorption properties of polyvinyl alcohol (PVA)-grafted silica gel particles PVA/SiO2 toward genistein are researched in this paper. The effects of the main factors on the adsorption properties are investigated, the adsorption mechanism is explored in depth, and the adsorption thermodynamics is researched. The experimental results show that the conventional hydrogen bond is formed between the hydroxyl groups with high density on the surfaces of PVA/SiO2 and the phenolic hydroxyl groups in genistein, while π-type hydrogen bond is formed between the hydroxyl groups of PVA/SiO2 and the conjugated aromatic rings. It is the two types of hydrogen bond that make the functional composite particles PVA/SiO2 produce very strong physical adsorption toward genistein. The competitive adsorption of the solvent can have severe negative impact on the adsorption capacity of genistein. Increasing temperature will weaken the hydrogen-bond interaction between PVA/SiO2 particles and genistein. The existence of electrolytes in the protic solvent will affect the adsorption negatively. The adsorption process of PVA/SiO2 particles toward genistein is exothermic and driven by enthalpy. The adsorption isotherm data matches the Langmuir model.

Details

ISSN :
15205207 and 15206106
Volume :
117
Database :
OpenAIRE
Journal :
The Journal of Physical Chemistry B
Accession number :
edsair.doi.dedup.....77194827bdda7ab37ccff995134df226
Full Text :
https://doi.org/10.1021/jp4004938