Back to Search Start Over

Carbonate stability in the reduced lower mantle

Authors :
Vitali B. Prakapenka
Farhang Nabiei
Marco Cantoni
Philippe Gillet
James Badro
Susannah M. Dorfman
Institut de Physique du Globe de Paris (IPGP)
Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Center for Advanced Radiation Sources [University of Chicago] (CARS)
University of Chicago
École normale supérieure - Lyon (ENS Lyon)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure de Lyon (ENS de Lyon)
Center for Advanced Radiation Sources, University of Chicago
Source :
Earth and Planetary Science Letters, Earth and Planetary Science Letters, Elsevier, 2018, 489, pp.84-91. ⟨10.1016/j.epsl.2018.02.035⟩, Earth and Planetary Science Letters, 2018, 489, pp.84-91. ⟨10.1016/j.epsl.2018.02.035⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; Carbonate minerals are important hosts of carbon in the crust and mantle with a key role in the transport and storage of carbon in Earth's deep interior over the history of the planet. Whether subducted carbonates efficiently melt and break down due to interactions with reduced phases or are preserved to great depths and ultimately reach the core-mantle boundary remains controversial. In this study, experiments in the laser-heated diamond anvil cell (LHDAC) on layered samples of dolomite (Mg,Ca)CO3 and iron at pressure and temperature conditions 23 reaching those of the deep lower mantle show that carbon-iron redox interactions destabilize the 24 MgCO3 component, producing a mixture of diamond, Fe7C3, and (Mg,Fe)O. However, CaCO3 is preserved, supporting its relative stability in carbonate-rich lithologies under reducing lower mantle conditions. These results constrain the thermodynamic stability of redox-driven breakdown of carbonates and demonstrate progress towards multiphase mantle petrology in the LHDAC at conditions of the lowermost mantle.

Details

Language :
English
ISSN :
0012821X
Database :
OpenAIRE
Journal :
Earth and Planetary Science Letters, Earth and Planetary Science Letters, Elsevier, 2018, 489, pp.84-91. ⟨10.1016/j.epsl.2018.02.035⟩, Earth and Planetary Science Letters, 2018, 489, pp.84-91. ⟨10.1016/j.epsl.2018.02.035⟩
Accession number :
edsair.doi.dedup.....770955d435efe1acc2750886805303d3
Full Text :
https://doi.org/10.1016/j.epsl.2018.02.035⟩