Back to Search Start Over

Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming

Authors :
Sigurdur F. Hafstein
Enrico Scalas
Skuli Gudmundsson
Peter Giesl
Source :
Discrete & Continuous Dynamical Systems - B. 23:939-956
Publication Year :
2018
Publisher :
American Institute of Mathematical Sciences (AIMS), 2018.

Abstract

We study the global asymptotic stability in probability of the zero solution of linear stochastic differential equations with constant coefficients. We develop a sum-of-squares program that verifies whether a parameterized candidate Lyapunov function is in fact a global Lyapunov function for such a system. Our class of candidate Lyapunov functions are naturally adapted to the problem. We consider functions of the form \begin{document} $V(\mathbf{x}) = \|\mathbf{x}\|_Q^p: = (\mathbf{x}^\top Q\mathbf{x})^{\frac{p}{2}}$ \end{document} , where the parameters are the positive definite matrix \begin{document} $Q$ \end{document} and the number \begin{document} $p>0$ \end{document} . We give several examples of our proposed method and show how it improves previous results.

Details

ISSN :
1553524X and 15313492
Volume :
23
Database :
OpenAIRE
Journal :
Discrete & Continuous Dynamical Systems - B
Accession number :
edsair.doi.dedup.....76d9d35f0ab19de6f72eb50649db3a20