Back to Search Start Over

Translocation of Synaptically Connected Interneurons across the Dentate Gyrus of the Early Postnatal Rat Hippocampus

Authors :
Albert E. Ayoub
Yury M. Morozov
Pasko Rakic
Source :
The Journal of Neuroscience. 26:5017-5027
Publication Year :
2006
Publisher :
Society for Neuroscience, 2006.

Abstract

Most neurons in the developing mammalian brain migrate to their final destinations by translocation of the cell nucleus within their leading process and immature bipolar body that is devoid of synaptic connections. Here, we used a combination of immunohistochemistry at light- and electron-microscopic (EM) levels and time-lapse imaging in slice cultures to analyze migration of synaptically interconnected, cholecystokinin-immunopositive [CCK(+)] interneurons in the dentate gyrus in the rat hippocampus during early postnatal ages. We observed dynamic morphogenetic transformation of the CCK(+) interneurons, from a horizontal bipolar shape situated in the molecular layer, through a transitional triangular and then vertical bipolar form that they acquire while traversing the granular layer to finally assume an adult-like pyramidal-shaped morphology on entering the hilus. Immunostaining with anti-glial fibrillary acidic protein and three-dimensional reconstructions from serial EM images indicate that, unlike granule cells, which migrate from the hilus to the granular layer, interneurons traverse this layer in the opposite direction without apparent surface-mediated guidance of the radial glial cells. Importantly, the somas, dendrites, and axons of the CCK(+) transitional forms maintain old and acquire new synaptic contacts while migrating across the dentate plate. The migration of synaptically interconnected neurons that may occur in response to local functional demand represents a novel mode of cell movement and form of neuroplasticity.

Details

ISSN :
15292401 and 02706474
Volume :
26
Database :
OpenAIRE
Journal :
The Journal of Neuroscience
Accession number :
edsair.doi.dedup.....7689f9145777736815d86aa300821521
Full Text :
https://doi.org/10.1523/jneurosci.0272-06.2006