Back to Search Start Over

Anisotropic surface stresses of a solid/fluid interface: Molecular dynamics calculations for the copper/methane interface

Authors :
Laurent Soulard
Patrice Malfreyt
Nicolas Pineau
Thibaud Dreher
Emeric Bourasseau
Claire A. Lemarchand
Centre d'Études de Limeil-Valenton (CEA-DAM)
Direction des Applications Militaires (DAM)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Institut de Chimie de Clermont-Ferrand (ICCF)
SIGMA Clermont (SIGMA Clermont)-Institut de Chimie du CNRS (INC)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Source :
Journal of Chemical Physics, Journal of Chemical Physics, 2019, 151 (24), pp.244703. ⟨10.1063/1.5129331⟩, Journal of Chemical Physics, American Institute of Physics, 2019, 151 (24), pp.244703. ⟨10.1063/1.5129331⟩
Publication Year :
2019
Publisher :
AIP Publishing, 2019.

Abstract

The full tensorial surface stress of an interface between a face-centered cubic crystal (copper) and an isotropic liquid (methane) is computed for two crystal orientations {100} and {110} using molecular dynamics simulations. The bulk crystal orientation {100} is symmetric, whereas the {110} orientation is not. Finite size effects, which can be important in the case of an interface between an isotropic solid and a liquid, are studied in detail for the two crystal orientations. We first show that the symmetry of the surface stress tensor is that of the bulk crystal orientation. In the case of the asymmetric crystal orientation {110}, the relative difference between the components of the surface stress is substantial (∼50%). Finally, we show that finite size effects persist to much larger sizes in the case of the {100} orientation compared to the case of the {110} interface, for instance, through an artificial breakdown of the symmetry of the surface stress tensor.

Details

ISSN :
10897690 and 00219606
Volume :
151
Database :
OpenAIRE
Journal :
The Journal of Chemical Physics
Accession number :
edsair.doi.dedup.....76857e53cda20657486db1fbebd0cf3c
Full Text :
https://doi.org/10.1063/1.5129331