Back to Search
Start Over
Alignment between Satellite and Central Galaxies in the SDSS DR7: Dependence on Large-scale Environment
- Source :
- The Astrophysical Journal. 859:115
- Publication Year :
- 2018
- Publisher :
- American Astronomical Society, 2018.
-
Abstract
- The alignment between satellites and central galaxies has been studied in detail both in observational and theoretical works. The widely accepted fact is that the satellites preferentially reside along the major axis of their central galaxy. However, the origin and large-scale environment dependence of this alignment are still unknown. In an attempt to figure out those, we use data constructed from SDSS DR7 to investigate the large-scale environmental dependence of this alignment with emphasis on examining the alignments' dependence on the colour of the central galaxy. We find a very strong large-scale environmental dependence of the satellite-central alignment in groups with blue centrals. Satellites of blue centrals in knots are preferentially located perpendicular to the major axis of the centrals, and the alignment angle decreases with environment namely when going from knots to voids. The alignment angle strongly depend on the ${}^{0.1}(g-r)$ colour of centrals. We suggest that the satellite-central alignment is the result of a competition between satellite accretion within large scale-structure and galaxy evolution inside host haloes. For groups containing red central galaxies, the satellite-central alignment is mainly determined by the evolution effect, while for blue central dominated groups, the effect of large-scale structure plays a more important role, especially in knots. Our results provide an explanation for how the satellite-central alignment forms within different large-scale environments. The perpendicular case in groups and knots with blue centrals may also provide insight into understanding similar polar arrangements such the formation of the Milky Way and Centaurus A's satellite system.<br />10 pages, 5 figures and 2 tables, accepted for publication in ApJ
- Subjects :
- Physics
Cosmology and Nongalactic Astrophysics (astro-ph.CO)
Accretion (meteorology)
010308 nuclear & particles physics
Milky Way
media_common.quotation_subject
Centaurus A
FOS: Physical sciences
Astronomy and Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
Astrophysics
Astrophysics - Astrophysics of Galaxies
01 natural sciences
Galaxy
Space and Planetary Science
Sky
Astrophysics of Galaxies (astro-ph.GA)
0103 physical sciences
Galaxy formation and evolution
Satellite
Halo
010303 astronomy & astrophysics
Astrophysics::Galaxy Astrophysics
Astrophysics - Cosmology and Nongalactic Astrophysics
media_common
Subjects
Details
- ISSN :
- 15384357
- Volume :
- 859
- Database :
- OpenAIRE
- Journal :
- The Astrophysical Journal
- Accession number :
- edsair.doi.dedup.....76849b3048b7255c4e95d8853c37ce25
- Full Text :
- https://doi.org/10.3847/1538-4357/aabe2b