Back to Search
Start Over
Higher rank lattices are not coarse median
- Source :
- Algebraic and Geometric Topology, Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2017, 16 (5), pp.2895-2910. ⟨10.2140/agt.2016.16.2895⟩, Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2017, 〈10.2140/agt.2016.16.2895〉, Algebr. Geom. Topol. 16, no. 5 (2016), 2895-2910
- Publication Year :
- 2014
-
Abstract
- We show that symmetric spaces and thick affine buildings which are not of spherical type $A_1^r$ have no coarse median in the sense of Bowditch. As a consequence, they are not quasi-isometric to a CAT(0) cube complex, answering a question of Haglund. Another consequence is that any lattice in a simple higher rank group over a local field is not coarse median.<br />13 pages, 2 figures. To appear in Algebraic & Geometric Topology
- Subjects :
- [ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]
higher rank lattice
CAT(0) cube complex
Spherical type
Rank (differential topology)
01 natural sciences
Combinatorics
51F99
Mathematics::Group Theory
Mathematics - Metric Geometry
Simple (abstract algebra)
Lattice (order)
[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]
building
FOS: Mathematics
0101 mathematics
20F65
coarse geometry
CAT (0) cube complex
Local field
Mathematics
Group (mathematics)
010102 general mathematics
Metric Geometry (math.MG)
53C35
quasi-isometry
010101 applied mathematics
20F65,53C35,51E24,51F99
symmetric space
51E24
20F65, 53C35, 51E24, 51F99
median algebra
Geometry and Topology
Affine transformation
Cube
Subjects
Details
- Language :
- English
- ISSN :
- 14722747 and 14722739
- Database :
- OpenAIRE
- Journal :
- Algebraic and Geometric Topology, Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2017, 16 (5), pp.2895-2910. ⟨10.2140/agt.2016.16.2895⟩, Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2017, 〈10.2140/agt.2016.16.2895〉, Algebr. Geom. Topol. 16, no. 5 (2016), 2895-2910
- Accession number :
- edsair.doi.dedup.....762fc7bfad8632a8f90adf2e3e457652