Back to Search Start Over

Swim training attenuates the adverse remodeling of LV structural and mechanical properties in the early compensated phase of hypertension

Authors :
Sara Helena Resende Carvalho
Cláudia Martins Carneiro
Jamille Locatelli
Quênia Janaína Tomaz de Castro
Luis Henrique L. S. Gomes
Antônio José Natali
Andrea Grabe-Guimarães
Mauro César Isoldi
Victor Neiva Lavorato
Nívia Carolina Nogueira de Paiva
Source :
LOCUS Repositório Institucional da UFV, Universidade Federal de Viçosa (UFV), instacron:UFV
Publication Year :
2017

Abstract

Aim Investigate to what extent low-intensity swim training for six weeks counterbalances the adverse remodeling due to the advance of pathological hypertrophy in the left ventricle (LV) structural and mechanical properties in the early compensated phase of hypertension in male SHR. Main methods Four-month-old male SHR and Wistar rats were randomly divided into Sed (sedentary) and Ex (exercised) groups. The exercised rats were submitted to a swimming protocol (1 h/day, 5 times/week, no additional load) for six weeks. LV tissue and isolated myocytes were used to assess structural and mechanical properties. Myocytes were stimulted at frequencies (F) of 1 and 3 Hz at 37 °C. Key findings Exercised SHR showed improvement in cardiovascular parameters compared to sedentary SHR (mean arterial pressure: 13.22%; resting HR: 14.28.%). About structural and mechanical properties, swim training induced a decrease in LV myocyte thickness (10.85%), number of inflammatory cells (21.24%); collagen type III (74.23%) and type I (85.6%) fiber areas; amplitude of single myocyte shortening (47% to F1 and 28.46% to F3), timecourses of shortening (16.5% to F1 and 7.55% to F3) and relaxation (15.31% to F3) compared to sedentary SHR. Significance Six weeks of swim training attenuates the adverse remodeling of LV structural and mechanical properties in the early compensated phase of hypertension in male SHR.

Details

ISSN :
18790631
Volume :
187
Database :
OpenAIRE
Journal :
Life sciences
Accession number :
edsair.doi.dedup.....762fa2c736ef6e9302e8a61e3fe622aa