Back to Search Start Over

Ranolazine ameliorates postresuscitation electrical instability and myocardial dysfunction and improves survival with good neurologic recovery in a rat model of cardiac arrest

Authors :
Yongqin Li
Mara Canovi
Lidia Staszewsky
Francesca Fumagalli
Teresa Letizia
Marcella Rocchetti
Marco Gobbi
Serge Masson
Giuseppe Ristagno
Deborah Novelli
Pietro Veglianese
Ilaria Russo
Antonio Zaza
Roberto Latini
Fumagalli, F
Russo, I
Staszewsky, L
Li, Y
Letizia, T
Masson, S
Novelli, D
Rocchetti, M
Canovi, M
Veglianese, P
Gobbi, M
Latini, R
Zaza, A
Ristagno, G
Source :
Heart rhythm. 11(9)
Publication Year :
2014

Abstract

Background During ischemia, enhancement of the "late Na+ current" (INaL) contributes to intracellular Ca2+ overload. Dysregulation of intracellular Ca2+ homeostasis plays a critical role in the pathophysiology of cardiac arrest and cardiopulmonary resuscitation (CPR), leading to ventricular arrhythmias and left ventricle (LV) dysfunction. Objective The purpose of this study was to investigate the effects of the INaL blocker ranolazine on outcome of CPR in a rat model. We hypothesized that ranolazine might reduce postresuscitation arrhythmias and improve survival and recovery. Methods Eighteen rats were assigned to receive intravenous ranolazine 10 mg/kg or vehicle. Ventricular fibrillation was induced and untreated for 8 minutes. CPR then was performed for 8 minutes. ECG and arterial and right atrial pressures were monitored up to 3 hours after CPR. After resuscitation, LV function was monitored by echocardiography, and 72-hour survival with neurologic recovery was evaluated. Plasma was obtained for biomarkers of heart and brain injury. Results All animals in the ranolazine group were resuscitated and survived up to 72 hours, whereas 72% in the vehicle group were resuscitated but 54% survived. The period of postresuscitation arrhythmia with hemodynamic instability was shorter in the ranolazine group compared to vehicle group (P

Details

ISSN :
15563871
Volume :
11
Issue :
9
Database :
OpenAIRE
Journal :
Heart rhythm
Accession number :
edsair.doi.dedup.....762047e139dfca63fa0c238917c53526