Back to Search Start Over

Semi-Group Theory for the Stokes Operator with Navier-Type Boundary Conditions on L p -Spaces

Authors :
Hind Al Baba
Miguel Escobedo
Chérif Amrouche
Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP)
Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)
Departamento de Matematicas
Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU)
Source :
Archive for Rational Mechanics and Analysis, Archive for Rational Mechanics and Analysis, Springer Verlag, 2017, 223 (2), pp.881-940. ⟨10.1007/s00205-016-1048-1⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

In this article we consider the Stokes problem with Navier-type boundary conditions on a domain $${\Omega}$$ , not necessarily simply connected. Since, under these conditions, the Stokes problem has a non trivial kernel, we also study the solutions lying in the orthogonal of that kernel. We prove the analyticity of several semigroups generated by the Stokes operator considered in different functional spaces. We obtain strong, weak and very weak solutions for the time dependent Stokes problem with the Navier-type boundary condition under different hypotheses on the initial data u 0 and external force f. Then, we study the fractional and pure imaginary powers of several operators related with our Stokes operators. Using the fractional powers, we prove maximal regularity results for the homogeneous Stokes problem. On the other hand, using the boundedness of the pure imaginary powers, we deduce maximal $${L^{p}-L^{q}}$$ regularity for the inhomogeneous Stokes problem.

Details

Language :
English
ISSN :
00039527 and 14320673
Database :
OpenAIRE
Journal :
Archive for Rational Mechanics and Analysis, Archive for Rational Mechanics and Analysis, Springer Verlag, 2017, 223 (2), pp.881-940. ⟨10.1007/s00205-016-1048-1⟩
Accession number :
edsair.doi.dedup.....75f60b8cca6fcece40a601c1bb8418b6
Full Text :
https://doi.org/10.1007/s00205-016-1048-1⟩