Back to Search Start Over

Hyperuricemia influences tryptophan metabolism via inhibition of multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP)

Authors :
Lambertus P. van den Heuvel
Rosalinde Masereeuw
Henricus A. M. Mutsaers
Anita C A Dankers
Joost G. J. Hoenderop
Fred C.G.J. Sweep
Frans G. M. Russel
Henry B.P.M. Dijkman
Source :
Biochimica et Biophysica Acta. Molecular Basis of Disease, 1832, 1715-22, Biochimica et Biophysica Acta. Molecular Basis of Disease, 1832, 10, pp. 1715-22, Dankers, A C A, Mutsaers, H A M, Dijkman, H B P M, van den Heuvel, L P, Hoenderop, J G, Sweep, F C G J, Russel, F G M & Masereeuw, R 2013, ' Hyperuricemia influences tryptophan metabolism via inhibition of multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP) ', Biochimica et Biophysica Acta-Molecular Basis of Disease, vol. 1832, no. 10, pp. 1715-1722 . https://doi.org/10.1016/j.bbadis.2013.05.002
Publication Year :
2013

Abstract

Contains fulltext : 127304.pdf (Publisher’s version ) (Closed access) Hyperuricemia is related to a variety of pathologies, including chronic kidney disease (CKD). However, the pathophysiological mechanisms underlying disease development are not yet fully elucidated. Here, we studied the effect of hyperuricemia on tryptophan metabolism and the potential role herein of two important uric acid efflux transporters, multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP). Hyperuricemia was induced in mice by treatment with the uricase inhibitor oxonic acid, confirmed by the presence of urate crystals in the urine of treated animals. A transport assay, using membrane vesicles of cells overexpressing the transporters, revealed that uric acid inhibited substrate-specific transport by BCRP at clinically relevant concentrations (calculated IC50 value: 365+/-13muM), as was previously reported for MRP4. Moreover, we identified kynurenic acid as a novel substrate for MRP4 and BCRP. This finding was corroborated by increased plasma levels of kynurenic acid observed in Mrp4(-/-) (107+/-19nM; P=0.145) and Bcrp(-/-) mice (133+/-10nM; P=0.0007) compared to wild type animals (71+/-11nM). Hyperuricemia was associated with >1.5 fold increase in plasma kynurenine levels in all strains. Moreover, hyperuricemia led to elevated plasma kynurenic acid levels (128+/-13nM, P=0.005) in wild type mice but did not further increase kynurenic acid levels in knockout mice. Based on our results, we postulate that elevated uric acid levels hamper MRP4 and BCRP functioning, thereby promoting the retention of other potentially toxic substrates, including kynurenic acid, which could contribute to the development of CKD.

Details

ISSN :
09254439
Database :
OpenAIRE
Journal :
Biochimica et Biophysica Acta. Molecular Basis of Disease, 1832, 1715-22, Biochimica et Biophysica Acta. Molecular Basis of Disease, 1832, 10, pp. 1715-22, Dankers, A C A, Mutsaers, H A M, Dijkman, H B P M, van den Heuvel, L P, Hoenderop, J G, Sweep, F C G J, Russel, F G M & Masereeuw, R 2013, ' Hyperuricemia influences tryptophan metabolism via inhibition of multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP) ', Biochimica et Biophysica Acta-Molecular Basis of Disease, vol. 1832, no. 10, pp. 1715-1722 . https://doi.org/10.1016/j.bbadis.2013.05.002
Accession number :
edsair.doi.dedup.....75e5a65c0953512d79191fbfbfc71695
Full Text :
https://doi.org/10.1016/j.bbadis.2013.05.002