Back to Search Start Over

State of health estimation and remaining useful life prediction of solid oxide fuel cell stack

Authors :
Antti Pohjoranta
Martin Stepančič
Boštjan Dolenc
Pavle Boškoski
Đani Juričić
Source :
Dolenc, B, Boškoski, P, Stepančič, M, Pohjoranta, A & Juričić, Đ 2017, ' State of health estimation and remaining useful life prediction of solid oxide fuel cell stack ', Energy Conversion and Management, vol. 148, pp. 993-1002 . https://doi.org/10.1016/j.enconman.2017.06.041
Publication Year :
2017
Publisher :
Elsevier, 2017.

Abstract

Having concurrent information regarding the state of health (SoH) of an operating solid oxide fuel cell (SOFC) stack can actively improve its overall management. Firstly, operating the SOFC by taking into account current health conditions, and its anticipated trend, can be beneficial to the total life span of the stack. Furthermore, such information can be of great importance to the maintenance staff, e.g. unplanned shutdowns can be avoided. Relatively little work has been done in the field of remaining useful life (RUL) prediction of SOFCs. The majority of work employs stack/cell voltage as a direct link for RUL predictions. This paper proposes an integrated approach for SoH estimation based on stack’s Ohmic area specific resistance (ASR). Subsequently, a drift model that describes the ASR increase over time enables accurate RUL prediction. The approach consists of three steps. Firstly, an Unscented Kalman filter, based on a lumped stack model, estimates the current ASR value. Secondly, a drift model for describing the temporal evolution in ASR is recursively identified employing the linear Kalman filter. Finally, employing the identified drift model, Monte Carlo simulation is performed to predict future time evolution in ASR and so to obtain RUL. The developed approach is validated with experimental data from a 10 kW SOFC power system. The results confirm that ASR is a viable SoH indicator for the SOFC stack.

Details

Language :
English
ISSN :
18792227 and 01968904
Volume :
148
Database :
OpenAIRE
Journal :
Energy Conversion and Management
Accession number :
edsair.doi.dedup.....75e1d84c95227a9d560e06d09932ac40
Full Text :
https://doi.org/10.1016/j.enconman.2017.06.041