Back to Search
Start Over
Quantum phase transition of many interacting spins coupled to a bosonic bath: Static and dynamical properties
- Source :
- Physical Review B 104 (2021): L060410-1–L060410-6. doi:10.1103/PhysRevB.104.L060410, info:cnr-pdr/source/autori:De Filippis G.; De Candia A.; Mishchenko A.S.; Cangemi L.M.; Nocera A.; Mishchenko P.A.; Sassetti M.; Fazio R.; Nagaosa N.; Cataudella V./titolo:Quantum phase transition of many interacting spins coupled to a bosonic bath: Static and dynamical properties/doi:10.1103%2FPhysRevB.104.L060410/rivista:Physical Review B/anno:2021/pagina_da:L060410-1/pagina_a:L060410-6/intervallo_pagine:L060410-1–L060410-6/volume:104
- Publication Year :
- 2021
- Publisher :
- American Physical Society, Cambridge, MA, Stati Uniti d'America, 2021.
-
Abstract
- By using worldline and diagrammatic quantum Monte Carlo techniques, matrix product state, and a variational approach \`a la Feynman, we investigate the equilibrium properties and relaxation features of a quantum system of $N$ spins antiferromagnetically interacting with each other, with strength $J$, and coupled to a common bath of bosonic oscillators, with strength $\ensuremath{\alpha}$. We show that, in the Ohmic regime, a Beretzinski-Thouless-Kosterlitz quantum phase transition occurs. While for $J=0$ the critical value of $\ensuremath{\alpha}$ decreases asymptotically with $1/N$ by increasing $N$, for nonvanishing $J$ it turns out to be practically independent on $N$, allowing to identify a finite range of values of $\ensuremath{\alpha}$ where spin phase coherence is preserved also for large $N$. Then, by using matrix product state simulations, and the Mori formalism and the variational approach \`a la Feynman jointly, we unveil the features of the relaxation, that, in particular, exhibits a nonmonotonic dependence on the temperature reminiscent of the Kondo effect. For the observed quantum phase transition we also establish a criterion analogous to that of the metal-insulator transition in solids.
- Subjects :
- Quantum phase transition
Physics
Quantum Physics
Spins
Statistical Mechanics (cond-mat.stat-mech)
Quantum Monte Carlo
FOS: Physical sciences
01 natural sciences
010305 fluids & plasmas
symbols.namesake
Quantum mechanics
0103 physical sciences
Quantum system
symbols
Feynman diagram
Kondo effect
010306 general physics
Quantum Physics (quant-ph)
DISSIPATIVE DYNAMIC
Matrix product state
Condensed Matter - Statistical Mechanics
Spin-½
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Physical Review B 104 (2021): L060410-1–L060410-6. doi:10.1103/PhysRevB.104.L060410, info:cnr-pdr/source/autori:De Filippis G.; De Candia A.; Mishchenko A.S.; Cangemi L.M.; Nocera A.; Mishchenko P.A.; Sassetti M.; Fazio R.; Nagaosa N.; Cataudella V./titolo:Quantum phase transition of many interacting spins coupled to a bosonic bath: Static and dynamical properties/doi:10.1103%2FPhysRevB.104.L060410/rivista:Physical Review B/anno:2021/pagina_da:L060410-1/pagina_a:L060410-6/intervallo_pagine:L060410-1–L060410-6/volume:104
- Accession number :
- edsair.doi.dedup.....75dc177a42bf861eb489a21d6d0df058
- Full Text :
- https://doi.org/10.1103/PhysRevB.104.L060410