Back to Search Start Over

Unsupervised connectionist clustering algorithms for a better supervised prediction: application to a radio communication problem

Authors :
Frédéric Alexandre
Laurent Bougrain
Neuromimetic intelligence (CORTEX)
INRIA Lorraine
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
International Neural Networks Society
Source :
IJCNN, International Joint Conference on Neural Networks, International Joint Conference on Neural Networks, International Neural Networks Society, 1999, Washington, USA, 6 p
Publication Year :
2003
Publisher :
IEEE, 2003.

Abstract

Colloque avec actes et comité de lecture.; Most models concerned with real-world applications can be improved in structuring data and incorporating knowledge about the domain. In our problem of radio electrical wave dying down prediction for mobile communication, a geographic database can be divided in contextual subsets, each representing an homogeneous domain where a predictive model performs better. More precisely, by clustering the input space, a predictive model (here a multilayer perceptron) can be trained on each subspace. Various unsupervised algorithms for clustering were evaluated (Kohonen's maps. Desieno's algorithm, Neural gas, Growing Neural Gas, Buhmann's algorithm) to obtain class homogeneous enough to decrease the predictive error of the radio electrical wave prediction

Details

Database :
OpenAIRE
Journal :
IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)
Accession number :
edsair.doi.dedup.....75d2381eaffb43c79f4074937110e6f3
Full Text :
https://doi.org/10.1109/ijcnn.1999.836220