Back to Search Start Over

Thermally Active TRPV1 Tonically Drives Central Spontaneous Glutamate Release

Authors :
Kiyomitsu Shoudai
James H. Peters
Stuart J. McDougall
Michael C. Andresen
Jessica A. Fawley
Source :
The Journal of Neuroscience. 30:14470-14475
Publication Year :
2010
Publisher :
Society for Neuroscience, 2010.

Abstract

Central synapses spontaneously release neurotransmitter at low rates. In the brainstem, cranial visceral afferent terminals in caudal solitary tract nucleus (NTS) display pronounced, activity-dependent, asynchronous release of glutamate and this extra release depends on TRPV1 receptors (TRPV1+). Asynchronous release is absent for afferents lacking TRPV1 (TRPV1−) and resting EPSC frequency was greater in TRPV1+. Here, we studied this basal activity difference by assessing thermal sensitivity of spontaneous and miniature synaptic events in TRPV1+ and TRPV1− second-order NTS neurons. The spontaneous EPSC rate decreased when temperature was decreased, increased steeply between 30 and 42°C only in TRPV1+ neurons, and was calcium-dependent. TRPV1-specific antagonist SB366791, but not TTX, strongly attenuated thermal responses. Temperature changes failed to alter EPSC frequency in TRPV1− neurons. EPSC amplitudes and decay kinetics changed little with temperature. IPSCs in these second-order NTS neurons were unaltered by temperature. Such results suggest that activated, presynaptic TRPV1+ receptors trigger continuous resting release of glutamate vesicles at physiological temperatures only in capsaicin-responsive terminals. In mechanically isolated individual neurons harvested from medial NTS, increases in temperature increased the rate of glutamate release only in TRPV1+ neurons, whereas IPSC rates were unaffected. Cadmium failed to block thermal increases in glutamate release, suggesting that calcium entry through TRPV1 channels may trigger glutamate release independently of voltage-activated calcium channels. Together, our findings indicate a new form of afferent signaling in which TRPV1 channels within central terminals of peripheral afferents tonically generate glutamate release in NTS at 37°C in the absence of afferent action potentials.

Details

ISSN :
15292401 and 02706474
Volume :
30
Database :
OpenAIRE
Journal :
The Journal of Neuroscience
Accession number :
edsair.doi.dedup.....75af3a78e55bd900a29c6ce98d5113ea