Back to Search Start Over

Energy asymptotics in the three-dimensional Brezis–Nirenberg problem

Authors :
Hynek Kovařík
Rupert L. Frank
Tobias König
California Institute of Technology (CALTECH)
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Università degli Studi di Brescia [Brescia]
Source :
Calculus of Variations and Partial Differential Equations, Calculus of Variations and Partial Differential Equations, Springer Verlag, 2021, 60 (2), ⟨10.1007/s00526-021-01929-3⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

For a bounded open set$$\Omega \subset {\mathbb {R}}^3$$Ω⊂R3we consider the minimization problem$$\begin{aligned} S(a+\epsilon V) = \inf _{0\not \equiv u\in H^1_0(\Omega )} \frac{\int _\Omega (|\nabla u|^2+ (a+\epsilon V) |u|^2)\,dx}{(\int _\Omega u^6\,dx)^{1/3}} \end{aligned}$$S(a+ϵV)=inf0≢u∈H01(Ω)∫Ω(|∇u|2+(a+ϵV)|u|2)dx(∫Ωu6dx)1/3involving the critical Sobolev exponent. The functionais assumed to be critical in the sense of Hebey and Vaugon. Under certain assumptions onaandVwe compute the asymptotics of$$S(a+\epsilon V)-S$$S(a+ϵV)-Sas$$\epsilon \rightarrow 0+$$ϵ→0+, whereSis the Sobolev constant. (Almost) minimizers concentrate at a point in the zero set of the Robin function corresponding toaand we determine the location of the concentration point within that set. We also show that our assumptions are almost necessary to have$$S(a+\epsilon V)S(a+ϵV)<Sfor all sufficiently small$$\epsilon >0$$ϵ>0.

Details

Language :
English
ISSN :
09442669 and 14320835
Database :
OpenAIRE
Journal :
Calculus of Variations and Partial Differential Equations, Calculus of Variations and Partial Differential Equations, Springer Verlag, 2021, 60 (2), ⟨10.1007/s00526-021-01929-3⟩
Accession number :
edsair.doi.dedup.....759fb24480cb7fb59a7d409d777264ae
Full Text :
https://doi.org/10.1007/s00526-021-01929-3⟩