Back to Search
Start Over
A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis
- Source :
- Science Advances. 8
- Publication Year :
- 2022
- Publisher :
- American Association for the Advancement of Science (AAAS), 2022.
-
Abstract
- Rechargeable zinc-air batteries call for high-performance bifunctional oxygen electrocatalysts. Transition metal single-atom catalysts constitute a promising candidate considering their maximum atom efficiency and high intrinsic activity. However, the fabrication of atomically dispersed transition metal sites is highly challenging, creating a need for for new design strategies and synthesis methods. Here, a clicking confinement strategy is proposed to efficiently predisperse transitional metal atoms in a precursor directed by click chemistry and ensure successful construction of abundant single-atom sites. Concretely, cobalt-coordinated porphyrin units are covalently clicked on the substrate for the confinement of the cobalt atoms and affording a Co-N-C electrocatalyst. The Co-N-C electrocatalyst exhibits impressive bifunctional oxygen electrocatalytic performances with an activity indicator Δ E of 0.79 V. This work extends the approach to prepare transition metal single-atom sites for efficient bifunctional oxygen electrocatalysis and inspires the methodology on precise synthesis of catalytic materials.
- Subjects :
- Multidisciplinary
Subjects
Details
- ISSN :
- 23752548
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Science Advances
- Accession number :
- edsair.doi.dedup.....759dc960cf8f3373a752e11cb0dc4f2a